{"title":"开发一种用于代码片段分类和堆栈溢出问题的超参数优化方法:HyperSCC","authors":"M. Öztürk","doi":"10.4108/eai.27-5-2022.174084","DOIUrl":null,"url":null,"abstract":"Although there exist various machine learning and text mining techniques to identify the programming language of complete code files, multi-label code snippet prediction was not considered by the research community. This work aims at devising a tuner for multi-label programming language prediction of stack overflow posts. To that end, a Hyper Source Code Classifier (HyperSCC) is devised along with rule-based automatic labeling by considering the bottlenecks of multi-label classification. The proposed method is evaluated on seven multi-label predictors to conduct an extensive analysis. The method is further compared with the three competitive alternatives in terms of one-label programming language prediction. HyperSCC outperformed the other methods in terms of the F1 score. Preprocessing results in a high reduction (50%) of training time when ensemble multi-label predictors are employed. In one-label programming language prediction, Gradient Boosting Machine (gbm) yields the highest accuracy (0.99) in predicting R posts that have a lot of distinctive words determining labels. The findings support the hypothesis that multi-label predictors can be strengthened with sophisticated feature selection and labeling approaches.","PeriodicalId":43034,"journal":{"name":"EAI Endorsed Transactions on Scalable Information Systems","volume":"2012 1","pages":"e5"},"PeriodicalIF":1.1000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a hyperparameter optimization method for classification of code snippets and questions of stack overflow: HyperSCC\",\"authors\":\"M. Öztürk\",\"doi\":\"10.4108/eai.27-5-2022.174084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although there exist various machine learning and text mining techniques to identify the programming language of complete code files, multi-label code snippet prediction was not considered by the research community. This work aims at devising a tuner for multi-label programming language prediction of stack overflow posts. To that end, a Hyper Source Code Classifier (HyperSCC) is devised along with rule-based automatic labeling by considering the bottlenecks of multi-label classification. The proposed method is evaluated on seven multi-label predictors to conduct an extensive analysis. The method is further compared with the three competitive alternatives in terms of one-label programming language prediction. HyperSCC outperformed the other methods in terms of the F1 score. Preprocessing results in a high reduction (50%) of training time when ensemble multi-label predictors are employed. In one-label programming language prediction, Gradient Boosting Machine (gbm) yields the highest accuracy (0.99) in predicting R posts that have a lot of distinctive words determining labels. The findings support the hypothesis that multi-label predictors can be strengthened with sophisticated feature selection and labeling approaches.\",\"PeriodicalId\":43034,\"journal\":{\"name\":\"EAI Endorsed Transactions on Scalable Information Systems\",\"volume\":\"2012 1\",\"pages\":\"e5\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Scalable Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.27-5-2022.174084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Scalable Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.27-5-2022.174084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Developing a hyperparameter optimization method for classification of code snippets and questions of stack overflow: HyperSCC
Although there exist various machine learning and text mining techniques to identify the programming language of complete code files, multi-label code snippet prediction was not considered by the research community. This work aims at devising a tuner for multi-label programming language prediction of stack overflow posts. To that end, a Hyper Source Code Classifier (HyperSCC) is devised along with rule-based automatic labeling by considering the bottlenecks of multi-label classification. The proposed method is evaluated on seven multi-label predictors to conduct an extensive analysis. The method is further compared with the three competitive alternatives in terms of one-label programming language prediction. HyperSCC outperformed the other methods in terms of the F1 score. Preprocessing results in a high reduction (50%) of training time when ensemble multi-label predictors are employed. In one-label programming language prediction, Gradient Boosting Machine (gbm) yields the highest accuracy (0.99) in predicting R posts that have a lot of distinctive words determining labels. The findings support the hypothesis that multi-label predictors can be strengthened with sophisticated feature selection and labeling approaches.