半平面上有限阶解析函数空间内插问题

IF 0.5 Q3 MATHEMATICS
K. Malyutin, Alexander L. Gusev
{"title":"半平面上有限阶解析函数空间内插问题","authors":"K. Malyutin, Alexander L. Gusev","doi":"10.15393/J3.ART.2018.5170","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to study the interpolation problem in the spaces of analytical functions of finite order ρ > 1 in the half-plane. The necessary and sufficient conditions for its solvability in terms of the canonical Nevanlinna product of nodes of interpolation are obtained. The solution of the interpolation problem is constructed in the form of the Jones interpolation series, which is a generalization of the Lagrange interpolation series.","PeriodicalId":41813,"journal":{"name":"Problemy Analiza-Issues of Analysis","volume":"75 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The interpolation problem in the spaces of analytical functions of finite order in the half-plane\",\"authors\":\"K. Malyutin, Alexander L. Gusev\",\"doi\":\"10.15393/J3.ART.2018.5170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to study the interpolation problem in the spaces of analytical functions of finite order ρ > 1 in the half-plane. The necessary and sufficient conditions for its solvability in terms of the canonical Nevanlinna product of nodes of interpolation are obtained. The solution of the interpolation problem is constructed in the form of the Jones interpolation series, which is a generalization of the Lagrange interpolation series.\",\"PeriodicalId\":41813,\"journal\":{\"name\":\"Problemy Analiza-Issues of Analysis\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problemy Analiza-Issues of Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15393/J3.ART.2018.5170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemy Analiza-Issues of Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15393/J3.ART.2018.5170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

本文的目的是研究半平面上有限阶ρ > 1解析函数空间中的插值问题。得到了用插值节点的正则Nevanlinna积表示其可解的充分必要条件。该插值问题的解被构造为琼斯插值级数的形式,它是拉格朗日插值级数的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The interpolation problem in the spaces of analytical functions of finite order in the half-plane
The aim of this paper is to study the interpolation problem in the spaces of analytical functions of finite order ρ > 1 in the half-plane. The necessary and sufficient conditions for its solvability in terms of the canonical Nevanlinna product of nodes of interpolation are obtained. The solution of the interpolation problem is constructed in the form of the Jones interpolation series, which is a generalization of the Lagrange interpolation series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信