{"title":"BendID:用于局部变形识别的柔性接口","authors":"V. P. Nguyen, S. Yoon, Ansh Verma, K. Ramani","doi":"10.1145/2632048.2636092","DOIUrl":null,"url":null,"abstract":"We present BendID, a bendable input device that recognizes the location, magnitude and direction of its deformation. We use BendID to provide users with a tactile metaphor for pressure based input. The device is constructed by layering an array of indium tin oxide (ITO)-coated PET film electrodes on a Polymethylsiloxane (PDMS) sheet, which is sandwiched between conductive foams. The pressure values that are interpreted from the ITO electrodes are classified using a Support Vector Machine (SVM) algorithm via the Weka library to identify the direction and location of bending. A polynomial regression model is also employed to estimate the overall magnitude of the pressure from the device. A model then maps these variables to a GUI to perform tasks. In this preliminary paper, we demonstrate this device by implementing it as an interface for 3D shape bending and a game controller.","PeriodicalId":20496,"journal":{"name":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"BendID: flexible interface for localized deformation recognition\",\"authors\":\"V. P. Nguyen, S. Yoon, Ansh Verma, K. Ramani\",\"doi\":\"10.1145/2632048.2636092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present BendID, a bendable input device that recognizes the location, magnitude and direction of its deformation. We use BendID to provide users with a tactile metaphor for pressure based input. The device is constructed by layering an array of indium tin oxide (ITO)-coated PET film electrodes on a Polymethylsiloxane (PDMS) sheet, which is sandwiched between conductive foams. The pressure values that are interpreted from the ITO electrodes are classified using a Support Vector Machine (SVM) algorithm via the Weka library to identify the direction and location of bending. A polynomial regression model is also employed to estimate the overall magnitude of the pressure from the device. A model then maps these variables to a GUI to perform tasks. In this preliminary paper, we demonstrate this device by implementing it as an interface for 3D shape bending and a game controller.\",\"PeriodicalId\":20496,\"journal\":{\"name\":\"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2632048.2636092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2632048.2636092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BendID: flexible interface for localized deformation recognition
We present BendID, a bendable input device that recognizes the location, magnitude and direction of its deformation. We use BendID to provide users with a tactile metaphor for pressure based input. The device is constructed by layering an array of indium tin oxide (ITO)-coated PET film electrodes on a Polymethylsiloxane (PDMS) sheet, which is sandwiched between conductive foams. The pressure values that are interpreted from the ITO electrodes are classified using a Support Vector Machine (SVM) algorithm via the Weka library to identify the direction and location of bending. A polynomial regression model is also employed to estimate the overall magnitude of the pressure from the device. A model then maps these variables to a GUI to perform tasks. In this preliminary paper, we demonstrate this device by implementing it as an interface for 3D shape bending and a game controller.