拟阿贝尔译码硬度的相关伪随机性

Maxime Bombar, Geoffroy Couteau, Alain Couvreur, Clément Ducros
{"title":"拟阿贝尔译码硬度的相关伪随机性","authors":"Maxime Bombar, Geoffroy Couteau, Alain Couvreur, Clément Ducros","doi":"10.48550/arXiv.2306.03488","DOIUrl":null,"url":null,"abstract":"Secure computation often benefits from the use of correlated randomness to achieve fast, non-cryptographic online protocols. A recent paradigm put forth by Boyle $\\textit{et al.}$ (CCS 2018, Crypto 2019) showed how pseudorandom correlation generators (PCG) can be used to generate large amounts of useful forms of correlated (pseudo)randomness, using minimal interactions followed solely by local computations, yielding silent secure two-party computation protocols (protocols where the preprocessing phase requires almost no communication). An additional property called programmability allows to extend this to build N-party protocols. However, known constructions for programmable PCG's can only produce OLE's over large fields, and use rather new splittable Ring-LPN assumption. In this work, we overcome both limitations. To this end, we introduce the quasi-abelian syndrome decoding problem (QA-SD), a family of assumptions which generalises the well-established quasi-cyclic syndrome decoding assumption. Building upon QA-SD, we construct new programmable PCG's for OLE's over any field $\\mathbb{F}_q$ with $q>2$. Our analysis also sheds light on the security of the ring-LPN assumption used in Boyle $\\textit{et al.}$ (Crypto 2020). Using our new PCG's, we obtain the first efficient N-party silent secure computation protocols for computing general arithmetic circuit over $\\mathbb{F}_q$ for any $q>2$.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"38 1","pages":"845"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Correlated Pseudorandomness from the Hardness of Quasi-Abelian Decoding\",\"authors\":\"Maxime Bombar, Geoffroy Couteau, Alain Couvreur, Clément Ducros\",\"doi\":\"10.48550/arXiv.2306.03488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Secure computation often benefits from the use of correlated randomness to achieve fast, non-cryptographic online protocols. A recent paradigm put forth by Boyle $\\\\textit{et al.}$ (CCS 2018, Crypto 2019) showed how pseudorandom correlation generators (PCG) can be used to generate large amounts of useful forms of correlated (pseudo)randomness, using minimal interactions followed solely by local computations, yielding silent secure two-party computation protocols (protocols where the preprocessing phase requires almost no communication). An additional property called programmability allows to extend this to build N-party protocols. However, known constructions for programmable PCG's can only produce OLE's over large fields, and use rather new splittable Ring-LPN assumption. In this work, we overcome both limitations. To this end, we introduce the quasi-abelian syndrome decoding problem (QA-SD), a family of assumptions which generalises the well-established quasi-cyclic syndrome decoding assumption. Building upon QA-SD, we construct new programmable PCG's for OLE's over any field $\\\\mathbb{F}_q$ with $q>2$. Our analysis also sheds light on the security of the ring-LPN assumption used in Boyle $\\\\textit{et al.}$ (Crypto 2020). Using our new PCG's, we obtain the first efficient N-party silent secure computation protocols for computing general arithmetic circuit over $\\\\mathbb{F}_q$ for any $q>2$.\",\"PeriodicalId\":13158,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"38 1\",\"pages\":\"845\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2306.03488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.03488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

安全计算通常受益于使用相关随机性来实现快速、非加密的在线协议。Boyle最近提出的一个范式$\textit{et al.}$ (CCS 2018, Crypto 2019)展示了如何使用伪随机相关生成器(PCG)来生成大量有用的相关(伪)随机性形式,使用最少的交互,然后仅进行本地计算,从而产生沉默的安全两方计算协议(预处理阶段几乎不需要通信的协议)。一个叫做可编程性的附加属性允许将其扩展到构建n方协议。然而,已知的可编程PCG结构只能在大范围内产生OLE,并且使用了相当新的可分裂环- lpn假设。在这项工作中,我们克服了这两个限制。为此,我们引入了拟阿贝尔综合征解码问题(QA-SD),这是一组假设,推广了已建立的拟循环综合征解码假设。在QA-SD的基础上,我们使用$q>2$为任何领域的OLE构建了新的可编程PCG $\mathbb{F}_q$。我们的分析还揭示了Boyle $\textit{et al.}$ (Crypto 2020)中使用的环lpn假设的安全性。使用我们的PCG,我们获得了第一个有效的n方静默安全计算协议,用于计算任意$q>2$上的$\mathbb{F}_q$上的一般算术电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlated Pseudorandomness from the Hardness of Quasi-Abelian Decoding
Secure computation often benefits from the use of correlated randomness to achieve fast, non-cryptographic online protocols. A recent paradigm put forth by Boyle $\textit{et al.}$ (CCS 2018, Crypto 2019) showed how pseudorandom correlation generators (PCG) can be used to generate large amounts of useful forms of correlated (pseudo)randomness, using minimal interactions followed solely by local computations, yielding silent secure two-party computation protocols (protocols where the preprocessing phase requires almost no communication). An additional property called programmability allows to extend this to build N-party protocols. However, known constructions for programmable PCG's can only produce OLE's over large fields, and use rather new splittable Ring-LPN assumption. In this work, we overcome both limitations. To this end, we introduce the quasi-abelian syndrome decoding problem (QA-SD), a family of assumptions which generalises the well-established quasi-cyclic syndrome decoding assumption. Building upon QA-SD, we construct new programmable PCG's for OLE's over any field $\mathbb{F}_q$ with $q>2$. Our analysis also sheds light on the security of the ring-LPN assumption used in Boyle $\textit{et al.}$ (Crypto 2020). Using our new PCG's, we obtain the first efficient N-party silent secure computation protocols for computing general arithmetic circuit over $\mathbb{F}_q$ for any $q>2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信