稀释行人动态的路径积分表示

Q4 Engineering
Alessandro Corbetta, F. Toschi
{"title":"稀释行人动态的路径积分表示","authors":"Alessandro Corbetta, F. Toschi","doi":"10.1142/9789813239609_0010","DOIUrl":null,"url":null,"abstract":"We frame the issue of pedestrian dynamics modeling in terms of path-integrals, a formalism originally introduced in quantum mechanics to account for the behavior of quantum particles, later extended to quantum field theories and to statistical physics. Path-integration enables a trajectory-centric representation of the pedestrian motion, directly providing the probability of observing a given trajectory. This appears as the most natural language to describe the statistical properties of pedestrian dynamics in generic settings. In a given venue, individual trajectories can belong to many possible usage patterns and, within each of them, they can display wide variability. \nWe provide first a primer on path-integration, and we introduce and discuss the path-integral functional probability measure for pedestrian dynamics in the diluted limit. As an illustrative example, we connect the path-integral description to a Langevin model that we developed previously for a particular crowd flow condition (the flow in a narrow corridor). Building on our previous real-life measurements, we provide a quantitatively correct path-integral representation for this condition. Finally, we show how the path-integral formalism can be used to evaluate the probability of rare-events (in the case of the corridor, U-turns).","PeriodicalId":38342,"journal":{"name":"复杂系统与复杂性科学","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Path-integral representation of diluted pedestrian dynamics\",\"authors\":\"Alessandro Corbetta, F. Toschi\",\"doi\":\"10.1142/9789813239609_0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We frame the issue of pedestrian dynamics modeling in terms of path-integrals, a formalism originally introduced in quantum mechanics to account for the behavior of quantum particles, later extended to quantum field theories and to statistical physics. Path-integration enables a trajectory-centric representation of the pedestrian motion, directly providing the probability of observing a given trajectory. This appears as the most natural language to describe the statistical properties of pedestrian dynamics in generic settings. In a given venue, individual trajectories can belong to many possible usage patterns and, within each of them, they can display wide variability. \\nWe provide first a primer on path-integration, and we introduce and discuss the path-integral functional probability measure for pedestrian dynamics in the diluted limit. As an illustrative example, we connect the path-integral description to a Langevin model that we developed previously for a particular crowd flow condition (the flow in a narrow corridor). Building on our previous real-life measurements, we provide a quantitatively correct path-integral representation for this condition. Finally, we show how the path-integral formalism can be used to evaluate the probability of rare-events (in the case of the corridor, U-turns).\",\"PeriodicalId\":38342,\"journal\":{\"name\":\"复杂系统与复杂性科学\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"复杂系统与复杂性科学\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1142/9789813239609_0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"复杂系统与复杂性科学","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1142/9789813239609_0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

我们根据路径积分来构建行人动力学建模问题,路径积分最初是在量子力学中引入的一种形式,用于解释量子粒子的行为,后来扩展到量子场论和统计物理学。路径整合能够以轨迹为中心表示行人运动,直接提供观察给定轨迹的概率。这似乎是描述一般情况下行人动态统计特性的最自然的语言。在给定的场地中,单个轨迹可以属于许多可能的使用模式,并且在每个模式中,它们可以显示出很大的可变性。本文首先介绍了路径积分的基本概念,并介绍和讨论了稀释极限下行人动态的路径积分函数概率测度。作为一个说述性的例子,我们将路径积分描述与我们之前为特定人群流动条件(狭窄走廊中的流动)开发的朗格万模型联系起来。基于我们之前的实际测量,我们为这种情况提供了定量正确的路径积分表示。最后,我们展示了如何使用路径积分形式来评估罕见事件(在走廊的情况下,u型转弯)的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path-integral representation of diluted pedestrian dynamics
We frame the issue of pedestrian dynamics modeling in terms of path-integrals, a formalism originally introduced in quantum mechanics to account for the behavior of quantum particles, later extended to quantum field theories and to statistical physics. Path-integration enables a trajectory-centric representation of the pedestrian motion, directly providing the probability of observing a given trajectory. This appears as the most natural language to describe the statistical properties of pedestrian dynamics in generic settings. In a given venue, individual trajectories can belong to many possible usage patterns and, within each of them, they can display wide variability. We provide first a primer on path-integration, and we introduce and discuss the path-integral functional probability measure for pedestrian dynamics in the diluted limit. As an illustrative example, we connect the path-integral description to a Langevin model that we developed previously for a particular crowd flow condition (the flow in a narrow corridor). Building on our previous real-life measurements, we provide a quantitatively correct path-integral representation for this condition. Finally, we show how the path-integral formalism can be used to evaluate the probability of rare-events (in the case of the corridor, U-turns).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
复杂系统与复杂性科学
复杂系统与复杂性科学 Engineering-Control and Systems Engineering
CiteScore
0.80
自引率
0.00%
发文量
891
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信