逻辑熵——特殊问题

4open Pub Date : 2022-01-01 DOI:10.1051/fopen/2022005
G. Manfredi
{"title":"逻辑熵——特殊问题","authors":"G. Manfredi","doi":"10.1051/fopen/2022005","DOIUrl":null,"url":null,"abstract":"Entropy is a fundamental quantity in many areas of knowledge, from physics to information science to biology. Originally put forward in the nineteenth century for very practical purposes (to quantify the reversibility of thermodynamic cycles, hence of thermal engines), entropy was the key concept that allowed Ludwig Boltzmann to bridge the gap between the (time irreversible) macroscopic thermodynamics and the (reversible) microscopic Newtonian physics. As defined by Boltzmann, the entropy SB represents the number of microscopic states that are compatible with a given macroscopic realization:","PeriodicalId":6841,"journal":{"name":"4open","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Logical entropy – special issue\",\"authors\":\"G. Manfredi\",\"doi\":\"10.1051/fopen/2022005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entropy is a fundamental quantity in many areas of knowledge, from physics to information science to biology. Originally put forward in the nineteenth century for very practical purposes (to quantify the reversibility of thermodynamic cycles, hence of thermal engines), entropy was the key concept that allowed Ludwig Boltzmann to bridge the gap between the (time irreversible) macroscopic thermodynamics and the (reversible) microscopic Newtonian physics. As defined by Boltzmann, the entropy SB represents the number of microscopic states that are compatible with a given macroscopic realization:\",\"PeriodicalId\":6841,\"journal\":{\"name\":\"4open\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/fopen/2022005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/fopen/2022005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

熵是许多知识领域的基本量,从物理学到信息科学再到生物学。熵最初是在19世纪提出的,用于非常实际的目的(量化热力学循环的可逆性,从而量化热机),它是路德维希·玻尔兹曼(Ludwig Boltzmann)在(时间不可逆的)宏观热力学和(可逆的)微观牛顿物理学之间建立桥梁的关键概念。根据玻尔兹曼的定义,熵SB表示与给定宏观实现相兼容的微观状态的数量:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logical entropy – special issue
Entropy is a fundamental quantity in many areas of knowledge, from physics to information science to biology. Originally put forward in the nineteenth century for very practical purposes (to quantify the reversibility of thermodynamic cycles, hence of thermal engines), entropy was the key concept that allowed Ludwig Boltzmann to bridge the gap between the (time irreversible) macroscopic thermodynamics and the (reversible) microscopic Newtonian physics. As defined by Boltzmann, the entropy SB represents the number of microscopic states that are compatible with a given macroscopic realization:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信