启动器:一个基于shell的框架,用于并行参数化研究的快速发展

Lucas A. Wilson, John M. Fonner
{"title":"启动器:一个基于shell的框架,用于并行参数化研究的快速发展","authors":"Lucas A. Wilson, John M. Fonner","doi":"10.1145/2616498.2616534","DOIUrl":null,"url":null,"abstract":"Petascale computing systems have enabled tremendous advances for traditional simulation and modeling algorithms that are built around parallel execution. Unfortunately, scientific domains using data-oriented or high-throughput paradigms have difficulty taking full advantage of these resources without custom software development. This paper describes our solution for rapidly developing parallel parametric studies using sequential or threaded tasks: The launcher. We detail how to get ensembles executing quickly through common job schedulers SGE and SLURM, and the various user-customizable options that the launcher provides. We illustrate the efficiency of or tool by presenting execution results at large scale (over 65,000 cores) for varying workloads, including a virtual screening workload with indeterminate runtimes using the drug docking software Autodock Vina.","PeriodicalId":93364,"journal":{"name":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","volume":"146 1","pages":"40:1-40:8"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Launcher: A Shell-based Framework for Rapid Development of Parallel Parametric Studies\",\"authors\":\"Lucas A. Wilson, John M. Fonner\",\"doi\":\"10.1145/2616498.2616534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Petascale computing systems have enabled tremendous advances for traditional simulation and modeling algorithms that are built around parallel execution. Unfortunately, scientific domains using data-oriented or high-throughput paradigms have difficulty taking full advantage of these resources without custom software development. This paper describes our solution for rapidly developing parallel parametric studies using sequential or threaded tasks: The launcher. We detail how to get ensembles executing quickly through common job schedulers SGE and SLURM, and the various user-customizable options that the launcher provides. We illustrate the efficiency of or tool by presenting execution results at large scale (over 65,000 cores) for varying workloads, including a virtual screening workload with indeterminate runtimes using the drug docking software Autodock Vina.\",\"PeriodicalId\":93364,\"journal\":{\"name\":\"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)\",\"volume\":\"146 1\",\"pages\":\"40:1-40:8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2616498.2616534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2616498.2616534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

千兆级计算系统使围绕并行执行构建的传统仿真和建模算法取得了巨大进步。不幸的是,如果没有定制软件开发,使用面向数据或高吞吐量范例的科学领域很难充分利用这些资源。本文描述了我们使用顺序或线程任务快速开发并行参数研究的解决方案:启动器。我们详细介绍了如何通过通用作业调度程序SGE和SLURM快速执行集成,以及启动程序提供的各种用户可自定义选项。我们通过展示针对不同工作负载(包括使用药物对接软件Autodock Vina具有不确定运行时间的虚拟筛选工作负载)的大规模(超过65,000个核)执行结果来说明该工具的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Launcher: A Shell-based Framework for Rapid Development of Parallel Parametric Studies
Petascale computing systems have enabled tremendous advances for traditional simulation and modeling algorithms that are built around parallel execution. Unfortunately, scientific domains using data-oriented or high-throughput paradigms have difficulty taking full advantage of these resources without custom software development. This paper describes our solution for rapidly developing parallel parametric studies using sequential or threaded tasks: The launcher. We detail how to get ensembles executing quickly through common job schedulers SGE and SLURM, and the various user-customizable options that the launcher provides. We illustrate the efficiency of or tool by presenting execution results at large scale (over 65,000 cores) for varying workloads, including a virtual screening workload with indeterminate runtimes using the drug docking software Autodock Vina.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信