使用两行弯曲矩形的弯曲函数数目的上限

S. Agievich
{"title":"使用两行弯曲矩形的弯曲函数数目的上限","authors":"S. Agievich","doi":"10.29235/1561-2430-2023-59-2-130-135","DOIUrl":null,"url":null,"abstract":"Using the representation of bent functions (maximum nonlinear functions) by bent rectangles, that is, special matrices with restrictions on columns and rows, we obtain herein an upper bound on the number of bent functions that improves the previously known bounds in a practical range of dimensions. The core of our method is the following fact based on the recent observation by V. Potapov (arXiv:2107.14583): a 2-row bent rectangle is completely determined by one of its rows and the remaining values in slightly more than half of the columns. ","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"75 1","pages":"497"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Upper bounding the number of bent functions using 2-row bent rectangles\",\"authors\":\"S. Agievich\",\"doi\":\"10.29235/1561-2430-2023-59-2-130-135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the representation of bent functions (maximum nonlinear functions) by bent rectangles, that is, special matrices with restrictions on columns and rows, we obtain herein an upper bound on the number of bent functions that improves the previously known bounds in a practical range of dimensions. The core of our method is the following fact based on the recent observation by V. Potapov (arXiv:2107.14583): a 2-row bent rectangle is completely determined by one of its rows and the remaining values in slightly more than half of the columns. \",\"PeriodicalId\":13158,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"75 1\",\"pages\":\"497\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-2430-2023-59-2-130-135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-2430-2023-59-2-130-135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用弯曲函数(最大非线性函数)的弯曲矩形表示,即具有列和行限制的特殊矩阵,我们在这里得到了弯曲函数数量的上界,改进了以前已知的在实际维数范围内的边界。我们方法的核心是基于V. Potapov (arXiv:2107.14583)最近观察到的以下事实:一个2行弯曲矩形完全由它的一行和略多于一半的列中的剩余值决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper bounding the number of bent functions using 2-row bent rectangles
Using the representation of bent functions (maximum nonlinear functions) by bent rectangles, that is, special matrices with restrictions on columns and rows, we obtain herein an upper bound on the number of bent functions that improves the previously known bounds in a practical range of dimensions. The core of our method is the following fact based on the recent observation by V. Potapov (arXiv:2107.14583): a 2-row bent rectangle is completely determined by one of its rows and the remaining values in slightly more than half of the columns. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信