{"title":"超声活化对多孔镍钛形状记忆合金显微组织和硬度的影响","authors":"Dovchinvanchig Maashaa, Tsetsegmaa Agvaantseren, Baasanjargal Narmandakh, Vasili Vasilievich Rubanik, Vasili Vasilievich Rubanik Jr.","doi":"10.31435/rsglobal_ws/30092022/7863","DOIUrl":null,"url":null,"abstract":"A Ni-Ti shape memory alloy with a porous structure is obtained by the method of self-propagating high-temperature synthesis (SHS) and investigated the possibility of changing its microstructure and hardness. The research aimed to study the changes in the microstructure and hardness of the Ni-Ti shape memory alloy with a porous structure when the Ni and Ti metal powders are preliminarily subjected to ultrasound activation for different periods. The microstructure of the alloy surfaces was studied with using a Hitachi scanning electron microscope (SEM), and the hardness was measured with a Brinell electronic hardness tester. The results of the experiments showed that the porosity and hardness of the Ni-Ti alloy enlarged with an increase in the time of ultrasound activation of the components. The innovative aspect of this study is that prior to the synthesis of powder elements with a purity of Ni 99.9% and Ti 99.9% with an average particle size of 40 μm, they were previously subjected separately to ultrasound activation at different periods.","PeriodicalId":19855,"journal":{"name":"Pharmacy World & Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE INFLUENCE OF ULTRASOUND ACTIVATION ON MICROSTRUCTURE AND HARDNESS OF POROUS Ni-Ti SHAPE MEMORY ALLOYS\",\"authors\":\"Dovchinvanchig Maashaa, Tsetsegmaa Agvaantseren, Baasanjargal Narmandakh, Vasili Vasilievich Rubanik, Vasili Vasilievich Rubanik Jr.\",\"doi\":\"10.31435/rsglobal_ws/30092022/7863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Ni-Ti shape memory alloy with a porous structure is obtained by the method of self-propagating high-temperature synthesis (SHS) and investigated the possibility of changing its microstructure and hardness. The research aimed to study the changes in the microstructure and hardness of the Ni-Ti shape memory alloy with a porous structure when the Ni and Ti metal powders are preliminarily subjected to ultrasound activation for different periods. The microstructure of the alloy surfaces was studied with using a Hitachi scanning electron microscope (SEM), and the hardness was measured with a Brinell electronic hardness tester. The results of the experiments showed that the porosity and hardness of the Ni-Ti alloy enlarged with an increase in the time of ultrasound activation of the components. The innovative aspect of this study is that prior to the synthesis of powder elements with a purity of Ni 99.9% and Ti 99.9% with an average particle size of 40 μm, they were previously subjected separately to ultrasound activation at different periods.\",\"PeriodicalId\":19855,\"journal\":{\"name\":\"Pharmacy World & Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacy World & Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31435/rsglobal_ws/30092022/7863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacy World & Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31435/rsglobal_ws/30092022/7863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
THE INFLUENCE OF ULTRASOUND ACTIVATION ON MICROSTRUCTURE AND HARDNESS OF POROUS Ni-Ti SHAPE MEMORY ALLOYS
A Ni-Ti shape memory alloy with a porous structure is obtained by the method of self-propagating high-temperature synthesis (SHS) and investigated the possibility of changing its microstructure and hardness. The research aimed to study the changes in the microstructure and hardness of the Ni-Ti shape memory alloy with a porous structure when the Ni and Ti metal powders are preliminarily subjected to ultrasound activation for different periods. The microstructure of the alloy surfaces was studied with using a Hitachi scanning electron microscope (SEM), and the hardness was measured with a Brinell electronic hardness tester. The results of the experiments showed that the porosity and hardness of the Ni-Ti alloy enlarged with an increase in the time of ultrasound activation of the components. The innovative aspect of this study is that prior to the synthesis of powder elements with a purity of Ni 99.9% and Ti 99.9% with an average particle size of 40 μm, they were previously subjected separately to ultrasound activation at different periods.