{"title":"典型钒冶炼厂周边土壤重金属污染及陆生植物富集能力分析","authors":"邵慧琪, 张又文, 曲琛, 厉文辉, 赵妍珺, 刘凝, 蔡寒梅, 吴传东, 刘杰民","doi":"10.13374/J.ISSN2095-9389.2019.04.23.001","DOIUrl":null,"url":null,"abstract":"Phytoremediation is an important means of soil heavy metal pollution remediation. In order to figure out the soil pollution status of the water source in the middle line of the South-to-North Water Transfer Project and repair it, soil samples(n = 14)and local dominant terrestrial plants(n = 113) were collected in typical areas around Chaobei River and the typical vanadium smelter in Hubei Province in four seasons. Microwave digestion–inductively coupled plasma mass spectrometry(ICP-MS) was applied to analyze the concentrations of vanadium(V), chromium(Cr), arsenic(As), and cadmium(Cd) in soils and plants. Soil pollution levels were evaluated on the basis of the Nemerow index method.The enrichment capabilities of plants for the four heavy metals were also analyzed.Results show that the heavy metal content of soil around the junction of the sewage outfall and the river is the highest among the seven sampling sites around Chaobei River.The concentration of V in the raw ore stacking area exceeds the limit by approximately 83 times and the concentrations of Cr,As,and Cd exceed the limit by approximately 2 times,which make the soil in the raw ore stacking area heavily contaminated.The soils in the six other sampling sites in the smelter are polluted in different degrees.The results of the evaluation of the enrichment and tolerance capabilities indicate that Gnaphalium affine,Erigeron multifolius,and Erigeron annuus have the highest tolerance capability for the four heavy metals.Conyza canadensis,Imperata cylindrica,Solanum photeinocarpum,Dendranthema indicum,Trifolium repens,and Echinochloa crusgalli are the hyperaccumulators for V,Cr,and Cd.The enrichment capabilities of Pteris vittata and Broussonetia papyrifera for As are extremely high.Moreover,Artemisia lavandulaefolia has a high enrichment capability for Cr and Cd,Ludwigia prostrata and Picris japonica have prominent tolerance and enrichment specificities for Cr and V,and Potentilla chinensis and Phytolacca americana have obvious enrichment capabilities for Cd specifically.The pot experiments of five local dominant terrestrial plants illustrate that,under the composite heavy metal contaminant conditions,Boehmeria nivea has the highest tolerance capability and Potentilla chinensis has the highest enrichment capability.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"54 3 1","pages":"302-312"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis of heavy metal contamination in the soil and enrichment capabilities of terrestrial plants around a typical vanadium smelter area\",\"authors\":\"邵慧琪, 张又文, 曲琛, 厉文辉, 赵妍珺, 刘凝, 蔡寒梅, 吴传东, 刘杰民\",\"doi\":\"10.13374/J.ISSN2095-9389.2019.04.23.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phytoremediation is an important means of soil heavy metal pollution remediation. In order to figure out the soil pollution status of the water source in the middle line of the South-to-North Water Transfer Project and repair it, soil samples(n = 14)and local dominant terrestrial plants(n = 113) were collected in typical areas around Chaobei River and the typical vanadium smelter in Hubei Province in four seasons. Microwave digestion–inductively coupled plasma mass spectrometry(ICP-MS) was applied to analyze the concentrations of vanadium(V), chromium(Cr), arsenic(As), and cadmium(Cd) in soils and plants. Soil pollution levels were evaluated on the basis of the Nemerow index method.The enrichment capabilities of plants for the four heavy metals were also analyzed.Results show that the heavy metal content of soil around the junction of the sewage outfall and the river is the highest among the seven sampling sites around Chaobei River.The concentration of V in the raw ore stacking area exceeds the limit by approximately 83 times and the concentrations of Cr,As,and Cd exceed the limit by approximately 2 times,which make the soil in the raw ore stacking area heavily contaminated.The soils in the six other sampling sites in the smelter are polluted in different degrees.The results of the evaluation of the enrichment and tolerance capabilities indicate that Gnaphalium affine,Erigeron multifolius,and Erigeron annuus have the highest tolerance capability for the four heavy metals.Conyza canadensis,Imperata cylindrica,Solanum photeinocarpum,Dendranthema indicum,Trifolium repens,and Echinochloa crusgalli are the hyperaccumulators for V,Cr,and Cd.The enrichment capabilities of Pteris vittata and Broussonetia papyrifera for As are extremely high.Moreover,Artemisia lavandulaefolia has a high enrichment capability for Cr and Cd,Ludwigia prostrata and Picris japonica have prominent tolerance and enrichment specificities for Cr and V,and Potentilla chinensis and Phytolacca americana have obvious enrichment capabilities for Cd specifically.The pot experiments of five local dominant terrestrial plants illustrate that,under the composite heavy metal contaminant conditions,Boehmeria nivea has the highest tolerance capability and Potentilla chinensis has the highest enrichment capability.\",\"PeriodicalId\":31263,\"journal\":{\"name\":\"工程设计学报\",\"volume\":\"54 3 1\",\"pages\":\"302-312\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"工程设计学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.13374/J.ISSN2095-9389.2019.04.23.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13374/J.ISSN2095-9389.2019.04.23.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Analysis of heavy metal contamination in the soil and enrichment capabilities of terrestrial plants around a typical vanadium smelter area
Phytoremediation is an important means of soil heavy metal pollution remediation. In order to figure out the soil pollution status of the water source in the middle line of the South-to-North Water Transfer Project and repair it, soil samples(n = 14)and local dominant terrestrial plants(n = 113) were collected in typical areas around Chaobei River and the typical vanadium smelter in Hubei Province in four seasons. Microwave digestion–inductively coupled plasma mass spectrometry(ICP-MS) was applied to analyze the concentrations of vanadium(V), chromium(Cr), arsenic(As), and cadmium(Cd) in soils and plants. Soil pollution levels were evaluated on the basis of the Nemerow index method.The enrichment capabilities of plants for the four heavy metals were also analyzed.Results show that the heavy metal content of soil around the junction of the sewage outfall and the river is the highest among the seven sampling sites around Chaobei River.The concentration of V in the raw ore stacking area exceeds the limit by approximately 83 times and the concentrations of Cr,As,and Cd exceed the limit by approximately 2 times,which make the soil in the raw ore stacking area heavily contaminated.The soils in the six other sampling sites in the smelter are polluted in different degrees.The results of the evaluation of the enrichment and tolerance capabilities indicate that Gnaphalium affine,Erigeron multifolius,and Erigeron annuus have the highest tolerance capability for the four heavy metals.Conyza canadensis,Imperata cylindrica,Solanum photeinocarpum,Dendranthema indicum,Trifolium repens,and Echinochloa crusgalli are the hyperaccumulators for V,Cr,and Cd.The enrichment capabilities of Pteris vittata and Broussonetia papyrifera for As are extremely high.Moreover,Artemisia lavandulaefolia has a high enrichment capability for Cr and Cd,Ludwigia prostrata and Picris japonica have prominent tolerance and enrichment specificities for Cr and V,and Potentilla chinensis and Phytolacca americana have obvious enrichment capabilities for Cd specifically.The pot experiments of five local dominant terrestrial plants illustrate that,under the composite heavy metal contaminant conditions,Boehmeria nivea has the highest tolerance capability and Potentilla chinensis has the highest enrichment capability.
期刊介绍:
Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.