基于三次混合规则的CO2 +正构烷烃三元体系汽液平衡预测关联

Q4 Chemical Engineering
K. Movagharnejad, Seyed Mohammad Arzideh
{"title":"基于三次混合规则的CO2 +正构烷烃三元体系汽液平衡预测关联","authors":"K. Movagharnejad, Seyed Mohammad Arzideh","doi":"10.22059/JCHPE.2020.295906.1305","DOIUrl":null,"url":null,"abstract":"The accurate description of the phase equilibria of CO2 and n-alkane multicomponent mixtures over a wide range of temperature, pressure, and n-alkane molecular weight, requires the models that are both consistent and mathematically flexible for such highly non-ideal systems. In this study, a predictive correlation was proposed for the vapor-liquid equilibrium data (VLE) of CO2 and n-alkane ternary systems, based on the Peng-Robinson equation of state (PR EOS), coupled to cubic mixing rules (CMRs). The ternary interaction parameters (TIP) correlation is developed using binary VLE data and tested for CO2 + n-alkane+ n-alkane ternary systems. For this purpose, binary VLE data of CO2 + n-alkane and n-alkane + n-alkane systems for n-alkane from C3 to C24, covering a total of about 70 references, used to correlate TIP in the ranges of 0.5-31 MPa and 230-663 K. Two temperature-dependent TIP correlations, based on acentric factor ratio, have been tuned with more than 2000 data points of the CO2 + n-alkane and the n-alkane + n-alkane binary systems with AARD of 3.13% and 6.71%, respectively. The generalized predictive correlation was proposed based on the proper three-body interaction contributions and successfully tested for VLE data of the CO2 + n-alkane + n-alkane ternary systems.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Predictive Correlation for Vapor-Liquid Equilibrium of CO2 + n-Alkane Ternary Systems Based on Cubic Mixing Rules\",\"authors\":\"K. Movagharnejad, Seyed Mohammad Arzideh\",\"doi\":\"10.22059/JCHPE.2020.295906.1305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate description of the phase equilibria of CO2 and n-alkane multicomponent mixtures over a wide range of temperature, pressure, and n-alkane molecular weight, requires the models that are both consistent and mathematically flexible for such highly non-ideal systems. In this study, a predictive correlation was proposed for the vapor-liquid equilibrium data (VLE) of CO2 and n-alkane ternary systems, based on the Peng-Robinson equation of state (PR EOS), coupled to cubic mixing rules (CMRs). The ternary interaction parameters (TIP) correlation is developed using binary VLE data and tested for CO2 + n-alkane+ n-alkane ternary systems. For this purpose, binary VLE data of CO2 + n-alkane and n-alkane + n-alkane systems for n-alkane from C3 to C24, covering a total of about 70 references, used to correlate TIP in the ranges of 0.5-31 MPa and 230-663 K. Two temperature-dependent TIP correlations, based on acentric factor ratio, have been tuned with more than 2000 data points of the CO2 + n-alkane and the n-alkane + n-alkane binary systems with AARD of 3.13% and 6.71%, respectively. The generalized predictive correlation was proposed based on the proper three-body interaction contributions and successfully tested for VLE data of the CO2 + n-alkane + n-alkane ternary systems.\",\"PeriodicalId\":15333,\"journal\":{\"name\":\"Journal of Chemical and Petroleum Engineering\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical and Petroleum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/JCHPE.2020.295906.1305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical and Petroleum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/JCHPE.2020.295906.1305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在温度、压力和正构烷烃分子量的大范围内准确描述二氧化碳和正构烷烃多组分混合物的相平衡,需要在这种高度非理想系统中既一致又具有数学灵活性的模型。本文基于Peng-Robinson状态方程(PR - EOS)和立方混合规则(cmr),提出了CO2和正构烷烃三元体系汽液平衡数据(VLE)的预测相关性。利用二元VLE数据建立了三元相互作用参数(TIP)相关性,并对CO2 +正构烷烃+正构烷烃三元体系进行了测试。为此,利用C3 ~ C24正构烷烃CO2 +正构烷烃和正构烷烃+正构烷烃体系的二元VLE数据,共约70篇文献,在0.5 ~ 31 MPa和230 ~ 663 K范围内对TIP进行关联。利用CO2 +正构烷烃和正构烷烃+正构烷烃二元体系的2000多个数据点,分别以AARD为3.13%和6.71%对两个温度相关的TIP进行了校正。基于适当的三体相互作用贡献,提出了广义预测相关性,并成功地对CO2 +正构烷烃+正构烷烃三元体系的VLE数据进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Predictive Correlation for Vapor-Liquid Equilibrium of CO2 + n-Alkane Ternary Systems Based on Cubic Mixing Rules
The accurate description of the phase equilibria of CO2 and n-alkane multicomponent mixtures over a wide range of temperature, pressure, and n-alkane molecular weight, requires the models that are both consistent and mathematically flexible for such highly non-ideal systems. In this study, a predictive correlation was proposed for the vapor-liquid equilibrium data (VLE) of CO2 and n-alkane ternary systems, based on the Peng-Robinson equation of state (PR EOS), coupled to cubic mixing rules (CMRs). The ternary interaction parameters (TIP) correlation is developed using binary VLE data and tested for CO2 + n-alkane+ n-alkane ternary systems. For this purpose, binary VLE data of CO2 + n-alkane and n-alkane + n-alkane systems for n-alkane from C3 to C24, covering a total of about 70 references, used to correlate TIP in the ranges of 0.5-31 MPa and 230-663 K. Two temperature-dependent TIP correlations, based on acentric factor ratio, have been tuned with more than 2000 data points of the CO2 + n-alkane and the n-alkane + n-alkane binary systems with AARD of 3.13% and 6.71%, respectively. The generalized predictive correlation was proposed based on the proper three-body interaction contributions and successfully tested for VLE data of the CO2 + n-alkane + n-alkane ternary systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信