集中源项椭圆型问题的自适应混合有限元法

Q1 Earth and Planetary Sciences
M. Ilyas, A. Garnadi, S. Nurdiati
{"title":"集中源项椭圆型问题的自适应混合有限元法","authors":"M. Ilyas, A. Garnadi, S. Nurdiati","doi":"10.17509/IJOST.V4I2.18183","DOIUrl":null,"url":null,"abstract":"An adaptive mixed finite element method using the Lagrange multiplier technique is used to solve elliptic problems with delta Dirac source terms. The problem arises in the use of Chow-Anderssen linear functional methodology to recover coefficients locally in parameter estimation of an elliptic equation from a point-wise measurement. In this article, we used a posterior error estimator based on averaging technique as refinement indicators to produce a cycle of mesh adaptation, which is experimentally shown to capture singularity phenomena. Our numerical results showed that the adaptive refinement process successfully refines elements around the center of the source terms. The results also showed that the global error estimation is better than uniform refinement process in terms of computation time.","PeriodicalId":37185,"journal":{"name":"Indonesian Journal of Science and Technology","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Mixed Finite Element Method for Elliptic Problems with Concentrated Source Terms\",\"authors\":\"M. Ilyas, A. Garnadi, S. Nurdiati\",\"doi\":\"10.17509/IJOST.V4I2.18183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive mixed finite element method using the Lagrange multiplier technique is used to solve elliptic problems with delta Dirac source terms. The problem arises in the use of Chow-Anderssen linear functional methodology to recover coefficients locally in parameter estimation of an elliptic equation from a point-wise measurement. In this article, we used a posterior error estimator based on averaging technique as refinement indicators to produce a cycle of mesh adaptation, which is experimentally shown to capture singularity phenomena. Our numerical results showed that the adaptive refinement process successfully refines elements around the center of the source terms. The results also showed that the global error estimation is better than uniform refinement process in terms of computation time.\",\"PeriodicalId\":37185,\"journal\":{\"name\":\"Indonesian Journal of Science and Technology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17509/IJOST.V4I2.18183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17509/IJOST.V4I2.18183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

采用拉格朗日乘法相结合的自适应混合有限元方法求解了带狄拉克源项的椭圆型问题。在用周-安德森线性泛函方法对椭圆方程进行点测量参数估计时,出现了局部恢复系数的问题。在本文中,我们使用基于平均技术的后验误差估计器作为细化指标来产生网格自适应周期,实验表明该周期可以捕获奇异现象。数值结果表明,自适应细化过程成功地细化了源项中心周围的元素。结果还表明,在计算时间方面,全局误差估计优于均匀细化处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Mixed Finite Element Method for Elliptic Problems with Concentrated Source Terms
An adaptive mixed finite element method using the Lagrange multiplier technique is used to solve elliptic problems with delta Dirac source terms. The problem arises in the use of Chow-Anderssen linear functional methodology to recover coefficients locally in parameter estimation of an elliptic equation from a point-wise measurement. In this article, we used a posterior error estimator based on averaging technique as refinement indicators to produce a cycle of mesh adaptation, which is experimentally shown to capture singularity phenomena. Our numerical results showed that the adaptive refinement process successfully refines elements around the center of the source terms. The results also showed that the global error estimation is better than uniform refinement process in terms of computation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indonesian Journal of Science and Technology
Indonesian Journal of Science and Technology Engineering-Engineering (all)
CiteScore
11.20
自引率
0.00%
发文量
10
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信