范数平面上三点集的费马-托里拆利问题

Q4 Mathematics
D. A. Ilyukhin
{"title":"范数平面上三点集的费马-托里拆利问题","authors":"D. A. Ilyukhin","doi":"10.22405/2226-8383-2022-23-5-72-86","DOIUrl":null,"url":null,"abstract":"In the paper the Fermat-Torricelli problem is considered. The problem asks a point minimizing the sum of distances to arbitrarily given points in d-dimensional real normed spaces. Various generalizations of this problem are outlined, current methods of solving and some recent results in this area are presented. The aim of the article is to find an answer to the following question: in what norms on the plane is the solution of the Fermat-Torricelli problem unique for any three points. The uniqueness criterion is formulated and proved in the work, in addition, the application of the criterion on the norms set by regular polygons, the so-called lambda planes, is shown.","PeriodicalId":37492,"journal":{"name":"Chebyshevskii Sbornik","volume":"163 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Fermat-Torricelli problem in the case of three-point sets in normed planes\",\"authors\":\"D. A. Ilyukhin\",\"doi\":\"10.22405/2226-8383-2022-23-5-72-86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper the Fermat-Torricelli problem is considered. The problem asks a point minimizing the sum of distances to arbitrarily given points in d-dimensional real normed spaces. Various generalizations of this problem are outlined, current methods of solving and some recent results in this area are presented. The aim of the article is to find an answer to the following question: in what norms on the plane is the solution of the Fermat-Torricelli problem unique for any three points. The uniqueness criterion is formulated and proved in the work, in addition, the application of the criterion on the norms set by regular polygons, the so-called lambda planes, is shown.\",\"PeriodicalId\":37492,\"journal\":{\"name\":\"Chebyshevskii Sbornik\",\"volume\":\"163 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chebyshevskii Sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22405/2226-8383-2022-23-5-72-86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chebyshevskii Sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22405/2226-8383-2022-23-5-72-86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文考虑了费马-托里拆利问题。这个问题要求一个点最小化到d维实赋范空间中任意给定点的距离之和。本文概述了这一问题的各种概括,介绍了目前解决这一问题的方法和最近的一些结果。本文的目的是寻找以下问题的答案:在平面上的什么范数下,费马-托里拆利问题的解对任意三点唯一。文中给出了唯一性判据,并给出了唯一性判据在正多边形(即平面)所定范数上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Fermat-Torricelli problem in the case of three-point sets in normed planes
In the paper the Fermat-Torricelli problem is considered. The problem asks a point minimizing the sum of distances to arbitrarily given points in d-dimensional real normed spaces. Various generalizations of this problem are outlined, current methods of solving and some recent results in this area are presented. The aim of the article is to find an answer to the following question: in what norms on the plane is the solution of the Fermat-Torricelli problem unique for any three points. The uniqueness criterion is formulated and proved in the work, in addition, the application of the criterion on the norms set by regular polygons, the so-called lambda planes, is shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chebyshevskii Sbornik
Chebyshevskii Sbornik Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
19
期刊介绍: The aim of the journal is to publish and disseminate research results of leading scientists in many areas of modern mathematics, some areas of physics and computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信