{"title":"β-烯胺羰基与熔铝酸盐偶联制备取代吡啶的研究——在三联吡啶合成中的应用","authors":"Yung-Yuan Lee, Shiuh‐Tzung Liu","doi":"10.3390/reactions3030029","DOIUrl":null,"url":null,"abstract":"A Hantzsch-type strategy for the synthesis of 2,3,5,6-tetrasubstituted pyridines via an oxidative coupling of β-enamine carbonyl compounds with rongalite was developed. This method employs rongalite as a C1 unit for the assembly of a pyridine ring at C-4 position, offering a facile method for the preparation of substituted pyridine derivatives with a broad functional group tolerance. In particular, this method allows us to prepare terpyridine derivatives, which are important ligands or structural fragments for catalysts and 3D metal–organic frameworks.","PeriodicalId":20873,"journal":{"name":"Reactions","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Preparation of Substituted Pyridines via a Coupling of β-Enamine Carbonyls with Rongalite-Application for Synthesis of Terpyridines\",\"authors\":\"Yung-Yuan Lee, Shiuh‐Tzung Liu\",\"doi\":\"10.3390/reactions3030029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Hantzsch-type strategy for the synthesis of 2,3,5,6-tetrasubstituted pyridines via an oxidative coupling of β-enamine carbonyl compounds with rongalite was developed. This method employs rongalite as a C1 unit for the assembly of a pyridine ring at C-4 position, offering a facile method for the preparation of substituted pyridine derivatives with a broad functional group tolerance. In particular, this method allows us to prepare terpyridine derivatives, which are important ligands or structural fragments for catalysts and 3D metal–organic frameworks.\",\"PeriodicalId\":20873,\"journal\":{\"name\":\"Reactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/reactions3030029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/reactions3030029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation of Substituted Pyridines via a Coupling of β-Enamine Carbonyls with Rongalite-Application for Synthesis of Terpyridines
A Hantzsch-type strategy for the synthesis of 2,3,5,6-tetrasubstituted pyridines via an oxidative coupling of β-enamine carbonyl compounds with rongalite was developed. This method employs rongalite as a C1 unit for the assembly of a pyridine ring at C-4 position, offering a facile method for the preparation of substituted pyridine derivatives with a broad functional group tolerance. In particular, this method allows us to prepare terpyridine derivatives, which are important ligands or structural fragments for catalysts and 3D metal–organic frameworks.