在社交媒体中收集来源数据的工具

Pritam Gundecha, Suhas Ranganath, Zhuo Feng, Huan Liu
{"title":"在社交媒体中收集来源数据的工具","authors":"Pritam Gundecha, Suhas Ranganath, Zhuo Feng, Huan Liu","doi":"10.1145/2487575.2487713","DOIUrl":null,"url":null,"abstract":"In recent years, social media sites have provided a large amount of information. Recipients of such information need mechanisms to know more about the received information, including the provenance. Previous research has shown that some attributes related to the received information provide additional context, so that a recipient can assess the amount of value, trust, and validity to be placed in the received information. Personal attributes of a user, including name, location, education, ethnicity, gender, and political and religious affiliations, can be found in social media sites. In this paper, we present a novel web-based tool for collecting the attributes of interest associated with a particular social media user related to the received information. This tool provides a way to combine different attributes available at different social media sites into a single user profile. Using different types of Twitter users, we also evaluate the performance of the tool in terms of number of attribute values collected, validity of these values, and total amount of retrieval time.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"A tool for collecting provenance data in social media\",\"authors\":\"Pritam Gundecha, Suhas Ranganath, Zhuo Feng, Huan Liu\",\"doi\":\"10.1145/2487575.2487713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, social media sites have provided a large amount of information. Recipients of such information need mechanisms to know more about the received information, including the provenance. Previous research has shown that some attributes related to the received information provide additional context, so that a recipient can assess the amount of value, trust, and validity to be placed in the received information. Personal attributes of a user, including name, location, education, ethnicity, gender, and political and religious affiliations, can be found in social media sites. In this paper, we present a novel web-based tool for collecting the attributes of interest associated with a particular social media user related to the received information. This tool provides a way to combine different attributes available at different social media sites into a single user profile. Using different types of Twitter users, we also evaluate the performance of the tool in terms of number of attribute values collected, validity of these values, and total amount of retrieval time.\",\"PeriodicalId\":20472,\"journal\":{\"name\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2487575.2487713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2487713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

近年来,社交媒体网站提供了大量的信息。此类信息的接收者需要更多地了解所接收信息的机制,包括其来源。先前的研究表明,与接收到的信息相关的一些属性提供了额外的上下文,因此接收者可以评估接收到的信息的价值、信任和有效性。用户的个人属性,包括姓名、位置、教育程度、种族、性别、政治和宗教信仰,都可以在社交媒体网站上找到。在本文中,我们提出了一种新颖的基于web的工具,用于收集与接收到的信息相关的特定社交媒体用户相关的兴趣属性。该工具提供了一种将不同社交媒体网站上可用的不同属性组合到单个用户配置文件中的方法。使用不同类型的Twitter用户,我们还根据收集的属性值的数量、这些值的有效性和总检索时间来评估工具的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A tool for collecting provenance data in social media
In recent years, social media sites have provided a large amount of information. Recipients of such information need mechanisms to know more about the received information, including the provenance. Previous research has shown that some attributes related to the received information provide additional context, so that a recipient can assess the amount of value, trust, and validity to be placed in the received information. Personal attributes of a user, including name, location, education, ethnicity, gender, and political and religious affiliations, can be found in social media sites. In this paper, we present a novel web-based tool for collecting the attributes of interest associated with a particular social media user related to the received information. This tool provides a way to combine different attributes available at different social media sites into a single user profile. Using different types of Twitter users, we also evaluate the performance of the tool in terms of number of attribute values collected, validity of these values, and total amount of retrieval time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信