两个小区、每个小区有三个用户的蜂窝网络的干扰对准和空间归一化自由度

Q4 Computer Science
Xiao-shi SONG, Chang-chuan YIN, Dan-pu LIU, Jian-feng LI
{"title":"两个小区、每个小区有三个用户的蜂窝网络的干扰对准和空间归一化自由度","authors":"Xiao-shi SONG,&nbsp;Chang-chuan YIN,&nbsp;Dan-pu LIU,&nbsp;Jian-feng LI","doi":"10.1016/S1005-8885(13)60215-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper characterizes the spatially-normalized degrees of freedom (DoF) of a 2-cell, 3-user per cell multiple input multiple output (MIMO) cellular networks with <em>M</em> antennas at each user and <em>N</em> antennas at each base station. We show that the spatially-normalized DoF is a piecewise linear function, with either <em>M</em> or <em>N</em> being the bottleneck. Given γ = M / N, we shown that for <figure><img></figure> there is redundancy in both <em>M</em> and <em>N</em>, i.e., either can be reduced without losing spatially-normalized DoF. On the other hand, for <figure><img></figure> it is shown that there is no redundancy in either <em>M</em> or <em>N</em>, i.e, neither can be reduced without losing spatially-normalized DoF. Our results also settle the issue of feasibility of linear interference alignment for all values of <em>M</em> and <em>N</em>. Specifically, it is shown that except for <figure><img></figure> for every other γ, the proper systems are actually not feasible.</p></div>","PeriodicalId":35359,"journal":{"name":"Journal of China Universities of Posts and Telecommunications","volume":"20 ","pages":"Pages 86-91"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1005-8885(13)60215-0","citationCount":"0","resultStr":"{\"title\":\"Interference alignment and spatially-normalized degrees of freedom of cellular networks with two cells and three users per cell\",\"authors\":\"Xiao-shi SONG,&nbsp;Chang-chuan YIN,&nbsp;Dan-pu LIU,&nbsp;Jian-feng LI\",\"doi\":\"10.1016/S1005-8885(13)60215-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper characterizes the spatially-normalized degrees of freedom (DoF) of a 2-cell, 3-user per cell multiple input multiple output (MIMO) cellular networks with <em>M</em> antennas at each user and <em>N</em> antennas at each base station. We show that the spatially-normalized DoF is a piecewise linear function, with either <em>M</em> or <em>N</em> being the bottleneck. Given γ = M / N, we shown that for <figure><img></figure> there is redundancy in both <em>M</em> and <em>N</em>, i.e., either can be reduced without losing spatially-normalized DoF. On the other hand, for <figure><img></figure> it is shown that there is no redundancy in either <em>M</em> or <em>N</em>, i.e, neither can be reduced without losing spatially-normalized DoF. Our results also settle the issue of feasibility of linear interference alignment for all values of <em>M</em> and <em>N</em>. Specifically, it is shown that except for <figure><img></figure> for every other γ, the proper systems are actually not feasible.</p></div>\",\"PeriodicalId\":35359,\"journal\":{\"name\":\"Journal of China Universities of Posts and Telecommunications\",\"volume\":\"20 \",\"pages\":\"Pages 86-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1005-8885(13)60215-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of China Universities of Posts and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1005888513602150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of China Universities of Posts and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1005888513602150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一个2小区,每小区3个用户的多输入多输出(MIMO)蜂窝网络的空间归一化自由度(DoF),每个用户有M个天线,每个基站有N个天线。我们证明了空间归一化自由度是一个分段线性函数,其中M或N是瓶颈。在给定γ = M / N的情况下,我们证明了在M和N中都存在冗余,即可以在不丢失空间归一化自由度的情况下减小任意一个。另一方面,由于M和N都不存在冗余,即在不损失空间归一化自由度的情况下,都不能进行约简。我们的结果也解决了所有M和n值的线性干涉对准的可行性问题。具体来说,它表明,除了每一个其他γ,适当的系统实际上是不可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interference alignment and spatially-normalized degrees of freedom of cellular networks with two cells and three users per cell

This paper characterizes the spatially-normalized degrees of freedom (DoF) of a 2-cell, 3-user per cell multiple input multiple output (MIMO) cellular networks with M antennas at each user and N antennas at each base station. We show that the spatially-normalized DoF is a piecewise linear function, with either M or N being the bottleneck. Given γ = M / N, we shown that for

there is redundancy in both M and N, i.e., either can be reduced without losing spatially-normalized DoF. On the other hand, for
it is shown that there is no redundancy in either M or N, i.e, neither can be reduced without losing spatially-normalized DoF. Our results also settle the issue of feasibility of linear interference alignment for all values of M and N. Specifically, it is shown that except for
for every other γ, the proper systems are actually not feasible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
1878
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信