{"title":"基于优化的电影四旋翼相机目标取景用户支持","authors":"Christoph Gebhardt, Otmar Hilliges","doi":"10.1145/3411764.3445568","DOIUrl":null,"url":null,"abstract":"To create aesthetically pleasing aerial footage, the correct framing of camera targets is crucial. However, current quadrotor camera tools do not consider the 3D extent of actual camera targets in their optimization schemes and simply interpolate between keyframes when generating a trajectory. This can yield videos with aesthetically unpleasing target framing. In this paper, we propose a target framing algorithm that optimizes the quadrotor camera pose such that targets are positioned at desirable screen locations according to videographic compositional rules and entirely visible throughout a shot. Camera targets are identified using a semi-automatic pipeline which leverages a deep-learning-based visual saliency model. A large-scale perceptual study (N ≈ 500) shows that our method enables users to produce shots with a target framing that is closer to what they intended to create and more or as aesthetically pleasing than with the previous state of the art.","PeriodicalId":20451,"journal":{"name":"Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimization-based User Support for Cinematographic Quadrotor Camera Target Framing\",\"authors\":\"Christoph Gebhardt, Otmar Hilliges\",\"doi\":\"10.1145/3411764.3445568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To create aesthetically pleasing aerial footage, the correct framing of camera targets is crucial. However, current quadrotor camera tools do not consider the 3D extent of actual camera targets in their optimization schemes and simply interpolate between keyframes when generating a trajectory. This can yield videos with aesthetically unpleasing target framing. In this paper, we propose a target framing algorithm that optimizes the quadrotor camera pose such that targets are positioned at desirable screen locations according to videographic compositional rules and entirely visible throughout a shot. Camera targets are identified using a semi-automatic pipeline which leverages a deep-learning-based visual saliency model. A large-scale perceptual study (N ≈ 500) shows that our method enables users to produce shots with a target framing that is closer to what they intended to create and more or as aesthetically pleasing than with the previous state of the art.\",\"PeriodicalId\":20451,\"journal\":{\"name\":\"Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3411764.3445568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411764.3445568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization-based User Support for Cinematographic Quadrotor Camera Target Framing
To create aesthetically pleasing aerial footage, the correct framing of camera targets is crucial. However, current quadrotor camera tools do not consider the 3D extent of actual camera targets in their optimization schemes and simply interpolate between keyframes when generating a trajectory. This can yield videos with aesthetically unpleasing target framing. In this paper, we propose a target framing algorithm that optimizes the quadrotor camera pose such that targets are positioned at desirable screen locations according to videographic compositional rules and entirely visible throughout a shot. Camera targets are identified using a semi-automatic pipeline which leverages a deep-learning-based visual saliency model. A large-scale perceptual study (N ≈ 500) shows that our method enables users to produce shots with a target framing that is closer to what they intended to create and more or as aesthetically pleasing than with the previous state of the art.