动态k图:一种动态图学习和时间图信号聚类的算法

Hesam Araghi, M. Babaie-zadeh, S. Achard
{"title":"动态k图:一种动态图学习和时间图信号聚类的算法","authors":"Hesam Araghi, M. Babaie-zadeh, S. Achard","doi":"10.23919/Eusipco47968.2020.9287661","DOIUrl":null,"url":null,"abstract":"Graph signal processing (GSP) have found many applications in different domains. The underlying graph may not be available in all applications, and it should be learned from the data. There exist complicated data, where the graph changes over time. Hence, it is necessary to estimate the dynamic graph. In this paper, a new dynamic graph learning algorithm, called dynamic K -graphs, is proposed. This algorithm is capable of both estimating the time-varying graph and clustering the temporal graph signals. Numerical experiments demonstrate the high performance of this algorithm compared with other algorithms.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"60 6 1","pages":"2195-2199"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamic K-Graphs: an Algorithm for Dynamic Graph Learning and Temporal Graph Signal Clustering\",\"authors\":\"Hesam Araghi, M. Babaie-zadeh, S. Achard\",\"doi\":\"10.23919/Eusipco47968.2020.9287661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph signal processing (GSP) have found many applications in different domains. The underlying graph may not be available in all applications, and it should be learned from the data. There exist complicated data, where the graph changes over time. Hence, it is necessary to estimate the dynamic graph. In this paper, a new dynamic graph learning algorithm, called dynamic K -graphs, is proposed. This algorithm is capable of both estimating the time-varying graph and clustering the temporal graph signals. Numerical experiments demonstrate the high performance of this algorithm compared with other algorithms.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"60 6 1\",\"pages\":\"2195-2199\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

图信号处理(GSP)在不同的领域得到了广泛的应用。底层图可能不是在所有应用程序中都可用,它应该从数据中学习。存在复杂的数据,其中的图表随时间而变化。因此,有必要对动态图进行估计。本文提出了一种新的动态图学习算法——动态K图。该算法既能估计时变图信号,又能对时变图信号进行聚类。数值实验表明,与其他算法相比,该算法具有较高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic K-Graphs: an Algorithm for Dynamic Graph Learning and Temporal Graph Signal Clustering
Graph signal processing (GSP) have found many applications in different domains. The underlying graph may not be available in all applications, and it should be learned from the data. There exist complicated data, where the graph changes over time. Hence, it is necessary to estimate the dynamic graph. In this paper, a new dynamic graph learning algorithm, called dynamic K -graphs, is proposed. This algorithm is capable of both estimating the time-varying graph and clustering the temporal graph signals. Numerical experiments demonstrate the high performance of this algorithm compared with other algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信