脉状蛋白中间细丝网络的多尺度力学和时间演化

Anna V. Schepers, C. Lorenz, P. Nietmann, A. Janshoff, S. Klumpp, S. Köster
{"title":"脉状蛋白中间细丝网络的多尺度力学和时间演化","authors":"Anna V. Schepers, C. Lorenz, P. Nietmann, A. Janshoff, S. Klumpp, S. Köster","doi":"10.1101/2021.01.30.428887","DOIUrl":null,"url":null,"abstract":"Significance The mechanical integrity of cells and their ability to adapt—for example, during wound healing or in metastasizing tumors—is largely determined by the cytoskeleton. The cytoskeleton is an intricate network of biopolymers and cross-linkers. Intermediate filaments, the softest and most extensible of the three filamentous proteins of the cytoskeleton, take the role of a safety belt for cells under strain. The mechanical properties of a network depend on several factors, such as the length and mechanical properties of the single filaments and, importantly, the interactions between filaments. Here, we use a multiscale approach to disentangle these effects, which allows for direct quantification of interaction kinetics. The cytoskeleton, an intricate network of protein filaments, motor proteins, and cross-linkers, largely determines the mechanical properties of cells. Among the three filamentous components, F-actin, microtubules, and intermediate filaments (IFs), the IF network is by far the most extensible and resilient to stress. We present a multiscale approach to disentangle the three main contributions to vimentin IF network mechanics—single-filament mechanics, filament length, and interactions between filaments—including their temporal evolution. Combining particle tracking, quadruple optical trapping, and computational modeling, we derive quantitative information on the strength and kinetics of filament interactions. Specifically, we find that hydrophobic contributions to network mechanics enter mostly via filament-elongation kinetics, whereas electrostatics have a direct influence on filament–filament interactions.","PeriodicalId":20595,"journal":{"name":"Proceedings of the National Academy of Sciences","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multiscale mechanics and temporal evolution of vimentin intermediate filament networks\",\"authors\":\"Anna V. Schepers, C. Lorenz, P. Nietmann, A. Janshoff, S. Klumpp, S. Köster\",\"doi\":\"10.1101/2021.01.30.428887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significance The mechanical integrity of cells and their ability to adapt—for example, during wound healing or in metastasizing tumors—is largely determined by the cytoskeleton. The cytoskeleton is an intricate network of biopolymers and cross-linkers. Intermediate filaments, the softest and most extensible of the three filamentous proteins of the cytoskeleton, take the role of a safety belt for cells under strain. The mechanical properties of a network depend on several factors, such as the length and mechanical properties of the single filaments and, importantly, the interactions between filaments. Here, we use a multiscale approach to disentangle these effects, which allows for direct quantification of interaction kinetics. The cytoskeleton, an intricate network of protein filaments, motor proteins, and cross-linkers, largely determines the mechanical properties of cells. Among the three filamentous components, F-actin, microtubules, and intermediate filaments (IFs), the IF network is by far the most extensible and resilient to stress. We present a multiscale approach to disentangle the three main contributions to vimentin IF network mechanics—single-filament mechanics, filament length, and interactions between filaments—including their temporal evolution. Combining particle tracking, quadruple optical trapping, and computational modeling, we derive quantitative information on the strength and kinetics of filament interactions. Specifically, we find that hydrophobic contributions to network mechanics enter mostly via filament-elongation kinetics, whereas electrostatics have a direct influence on filament–filament interactions.\",\"PeriodicalId\":20595,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2021.01.30.428887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.01.30.428887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

细胞的机械完整性及其适应能力——例如,在伤口愈合或肿瘤转移过程中——在很大程度上是由细胞骨架决定的。细胞骨架是由生物聚合物和交联剂组成的复杂网络。在细胞骨架的三种丝状蛋白中,中间丝状蛋白是最柔软、最具延展性的,在细胞受到压力时起着安全带的作用。网状材料的力学性能取决于几个因素,比如单丝的长度和力学性能,更重要的是,细丝之间的相互作用。在这里,我们使用多尺度方法来解开这些效应,这允许直接量化相互作用动力学。细胞骨架是由蛋白质丝、运动蛋白和交联剂组成的复杂网络,它在很大程度上决定了细胞的机械特性。在f -肌动蛋白、微管和中间丝(IF)这三种丝状成分中,IF网络是迄今为止最具延展性和抗应激能力的。我们提出了一种多尺度的方法来解开维门蛋白中频网络力学的三个主要贡献——单丝力学、丝长度和丝之间的相互作用——包括它们的时间演化。结合粒子跟踪、四重光学捕获和计算模型,我们获得了灯丝相互作用强度和动力学的定量信息。具体来说,我们发现疏水对网络力学的贡献主要通过长丝延伸动力学进入,而静电对长丝相互作用有直接影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale mechanics and temporal evolution of vimentin intermediate filament networks
Significance The mechanical integrity of cells and their ability to adapt—for example, during wound healing or in metastasizing tumors—is largely determined by the cytoskeleton. The cytoskeleton is an intricate network of biopolymers and cross-linkers. Intermediate filaments, the softest and most extensible of the three filamentous proteins of the cytoskeleton, take the role of a safety belt for cells under strain. The mechanical properties of a network depend on several factors, such as the length and mechanical properties of the single filaments and, importantly, the interactions between filaments. Here, we use a multiscale approach to disentangle these effects, which allows for direct quantification of interaction kinetics. The cytoskeleton, an intricate network of protein filaments, motor proteins, and cross-linkers, largely determines the mechanical properties of cells. Among the three filamentous components, F-actin, microtubules, and intermediate filaments (IFs), the IF network is by far the most extensible and resilient to stress. We present a multiscale approach to disentangle the three main contributions to vimentin IF network mechanics—single-filament mechanics, filament length, and interactions between filaments—including their temporal evolution. Combining particle tracking, quadruple optical trapping, and computational modeling, we derive quantitative information on the strength and kinetics of filament interactions. Specifically, we find that hydrophobic contributions to network mechanics enter mostly via filament-elongation kinetics, whereas electrostatics have a direct influence on filament–filament interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信