{"title":"基于卷积神经网络的自动囊泡融合检测","authors":"Haohan Li, Zhaozheng Yin, Yingke Xu","doi":"10.1109/ISBI.2017.7950497","DOIUrl":null,"url":null,"abstract":"Quantitative analysis of vesicle-plasma membrane fusion events in the fluorescence microscopy, has been proven to be important in the vesicle exocytosis study. In this paper, we present a framework to automatically detect fusion events. First, an iterative searching algorithm is developed to extract image patch sequences containing potential events. Then, we propose an event image to integrate the critical image patches of a candidate event into a single-image joint representation as the input to Convolutional Neural Networks (CNNs). According to the duration of candidate events, we design three CNN architectures to automatically learn features for the fusion event classification. Compared on 9 challenging datasets, our proposed method showed very competitive performance and outperformed two state-of-the-arts.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"17 1","pages":"183-187"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automated vesicle fusion detection using Convolutional Neural Networks\",\"authors\":\"Haohan Li, Zhaozheng Yin, Yingke Xu\",\"doi\":\"10.1109/ISBI.2017.7950497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantitative analysis of vesicle-plasma membrane fusion events in the fluorescence microscopy, has been proven to be important in the vesicle exocytosis study. In this paper, we present a framework to automatically detect fusion events. First, an iterative searching algorithm is developed to extract image patch sequences containing potential events. Then, we propose an event image to integrate the critical image patches of a candidate event into a single-image joint representation as the input to Convolutional Neural Networks (CNNs). According to the duration of candidate events, we design three CNN architectures to automatically learn features for the fusion event classification. Compared on 9 challenging datasets, our proposed method showed very competitive performance and outperformed two state-of-the-arts.\",\"PeriodicalId\":6547,\"journal\":{\"name\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"volume\":\"17 1\",\"pages\":\"183-187\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2017.7950497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated vesicle fusion detection using Convolutional Neural Networks
Quantitative analysis of vesicle-plasma membrane fusion events in the fluorescence microscopy, has been proven to be important in the vesicle exocytosis study. In this paper, we present a framework to automatically detect fusion events. First, an iterative searching algorithm is developed to extract image patch sequences containing potential events. Then, we propose an event image to integrate the critical image patches of a candidate event into a single-image joint representation as the input to Convolutional Neural Networks (CNNs). According to the duration of candidate events, we design three CNN architectures to automatically learn features for the fusion event classification. Compared on 9 challenging datasets, our proposed method showed very competitive performance and outperformed two state-of-the-arts.