p -极小域的可定义完备性及其应用

IF 0.9 1区 数学 Q1 LOGIC
Pablo Cubides Kovacsics, Françoise Delon
{"title":"p -极小域的可定义完备性及其应用","authors":"Pablo Cubides Kovacsics, Françoise Delon","doi":"10.1142/s0219061322500040","DOIUrl":null,"url":null,"abstract":"We show that every definable nested family of closed and bounded subsets of a [Formula: see text]-minimal field [Formula: see text] has nonempty intersection. As an application we answer a question of Darnière and Halupczok showing that [Formula: see text]-minimal fields satisfy the “extreme value property”: for every closed and bounded subset [Formula: see text] and every interpretable continuous function [Formula: see text] (where [Formula: see text] denotes the value group), [Formula: see text] admits a maximal value. Two further corollaries are obtained as a consequence of their work. The first one shows that every interpretable subset of [Formula: see text] is already interpretable in the language of rings, answering a question of Cluckers and Halupczok. This implies in particular that every [Formula: see text]-minimal field is polynomially bounded. The second one characterizes those [Formula: see text]-minimal fields satisfying a classical cell preparation theorem as those having definable Skolem functions, generalizing a result of Mourgues.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"65 1","pages":"2250004:1-2250004:16"},"PeriodicalIF":0.9000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Definable completeness of P-minimal fields and applications\",\"authors\":\"Pablo Cubides Kovacsics, Françoise Delon\",\"doi\":\"10.1142/s0219061322500040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that every definable nested family of closed and bounded subsets of a [Formula: see text]-minimal field [Formula: see text] has nonempty intersection. As an application we answer a question of Darnière and Halupczok showing that [Formula: see text]-minimal fields satisfy the “extreme value property”: for every closed and bounded subset [Formula: see text] and every interpretable continuous function [Formula: see text] (where [Formula: see text] denotes the value group), [Formula: see text] admits a maximal value. Two further corollaries are obtained as a consequence of their work. The first one shows that every interpretable subset of [Formula: see text] is already interpretable in the language of rings, answering a question of Cluckers and Halupczok. This implies in particular that every [Formula: see text]-minimal field is polynomially bounded. The second one characterizes those [Formula: see text]-minimal fields satisfying a classical cell preparation theorem as those having definable Skolem functions, generalizing a result of Mourgues.\",\"PeriodicalId\":50144,\"journal\":{\"name\":\"Journal of Mathematical Logic\",\"volume\":\"65 1\",\"pages\":\"2250004:1-2250004:16\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219061322500040\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219061322500040","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了[公式:见文]-极小域[公式:见文]的每个可定义嵌套的闭子集和有界子集族具有非空相交。作为一个应用,我们回答了darni re和Halupczok的一个问题,证明了[公式:见文]-极小域满足“极值性质”:对于每一个封闭有界子集[公式:见文]和每一个可解释的连续函数[公式:见文](其中[公式:见文]表示值群),[公式:见文]承认一个最大值。他们的工作还得出了另外两个推论。第一个表明[公式:见文本]的每一个可解释的子集在环的语言中已经是可解释的,回答了Cluckers和Halupczok的问题。这特别意味着每个[公式:见文本]最小域都是多项式有界的。第二种方法将满足经典细胞制备定理的最小域描述为具有可定义的Skolem函数的最小域,推广了Mourgues的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Definable completeness of P-minimal fields and applications
We show that every definable nested family of closed and bounded subsets of a [Formula: see text]-minimal field [Formula: see text] has nonempty intersection. As an application we answer a question of Darnière and Halupczok showing that [Formula: see text]-minimal fields satisfy the “extreme value property”: for every closed and bounded subset [Formula: see text] and every interpretable continuous function [Formula: see text] (where [Formula: see text] denotes the value group), [Formula: see text] admits a maximal value. Two further corollaries are obtained as a consequence of their work. The first one shows that every interpretable subset of [Formula: see text] is already interpretable in the language of rings, answering a question of Cluckers and Halupczok. This implies in particular that every [Formula: see text]-minimal field is polynomially bounded. The second one characterizes those [Formula: see text]-minimal fields satisfying a classical cell preparation theorem as those having definable Skolem functions, generalizing a result of Mourgues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信