S. Kesavapany, K. Lau, D. McLoughlin, J. Brownlees, S. Ackerley, P. Leigh, C. Shaw, C. Miller
{"title":"P35 /cdk5结合和磷酸化-catenin并调节-catenin/早老素-1的相互作用。","authors":"S. Kesavapany, K. Lau, D. McLoughlin, J. Brownlees, S. Ackerley, P. Leigh, C. Shaw, C. Miller","doi":"10.1046/J.1460-9568.2001.01376.X","DOIUrl":null,"url":null,"abstract":"The neuronal cyclin-dependent kinase p35/cdk5 comprises a catalytic subunit (cdk5) and an activator subunit (p35). To identify novel p35/cdk5 substrates, we utilized the yeast two-hybrid system to screen for human p35 binding partners. From one such screen, we identified beta-catenin as an interacting protein. Confirmation that p35 binds to beta-catenin was obtained by using glutathione S-transferase (GST)-beta-catenin fusion proteins that interacted with both endogenous and transfected p35, and by showing that beta-catenin was present in p35 immunoprecipitates. p35 and beta-catenin also displayed overlapping subcellular distribution patterns in cells including neurons. Finally, we demonstrated that p35/cdk5 phosphorylates beta-catenin. beta-catenin also binds to presenilin-1 and altered beta-catenin/presenilin-1 interactions may be mechanistic in Alzheimer's disease (AD). Abnormal p35/cdk5 activity has also been suggested to contribute to AD. We therefore investigated how modulation of p35/cdk5 activity influenced beta-catenin/presenilin-1 interactions. Inhibition of p35/cdk5 with roscovitine did not alter the steady state levels of either beta-catenin or presenilin-1 but reduced the amount of presenilin-1 bound to beta-catenin. Thus, p35/cdk5 binds and phosphorylates beta-catenin and regulates its binding to presenilin-1. The findings reported here therefore provide a novel molecular framework to connect p35/cdk5 with beta-catenin and presenilin-1 in AD.","PeriodicalId":79424,"journal":{"name":"Supplement ... to the European journal of neuroscience","volume":"13 1","pages":"241-7"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":"{\"title\":\"p35/cdk5 binds and phosphorylates beta-catenin and regulates beta-catenin/presenilin-1 interaction.\",\"authors\":\"S. Kesavapany, K. Lau, D. McLoughlin, J. Brownlees, S. Ackerley, P. Leigh, C. Shaw, C. Miller\",\"doi\":\"10.1046/J.1460-9568.2001.01376.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The neuronal cyclin-dependent kinase p35/cdk5 comprises a catalytic subunit (cdk5) and an activator subunit (p35). To identify novel p35/cdk5 substrates, we utilized the yeast two-hybrid system to screen for human p35 binding partners. From one such screen, we identified beta-catenin as an interacting protein. Confirmation that p35 binds to beta-catenin was obtained by using glutathione S-transferase (GST)-beta-catenin fusion proteins that interacted with both endogenous and transfected p35, and by showing that beta-catenin was present in p35 immunoprecipitates. p35 and beta-catenin also displayed overlapping subcellular distribution patterns in cells including neurons. Finally, we demonstrated that p35/cdk5 phosphorylates beta-catenin. beta-catenin also binds to presenilin-1 and altered beta-catenin/presenilin-1 interactions may be mechanistic in Alzheimer's disease (AD). Abnormal p35/cdk5 activity has also been suggested to contribute to AD. We therefore investigated how modulation of p35/cdk5 activity influenced beta-catenin/presenilin-1 interactions. Inhibition of p35/cdk5 with roscovitine did not alter the steady state levels of either beta-catenin or presenilin-1 but reduced the amount of presenilin-1 bound to beta-catenin. Thus, p35/cdk5 binds and phosphorylates beta-catenin and regulates its binding to presenilin-1. The findings reported here therefore provide a novel molecular framework to connect p35/cdk5 with beta-catenin and presenilin-1 in AD.\",\"PeriodicalId\":79424,\"journal\":{\"name\":\"Supplement ... to the European journal of neuroscience\",\"volume\":\"13 1\",\"pages\":\"241-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Supplement ... to the European journal of neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1046/J.1460-9568.2001.01376.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supplement ... to the European journal of neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1046/J.1460-9568.2001.01376.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
p35/cdk5 binds and phosphorylates beta-catenin and regulates beta-catenin/presenilin-1 interaction.
The neuronal cyclin-dependent kinase p35/cdk5 comprises a catalytic subunit (cdk5) and an activator subunit (p35). To identify novel p35/cdk5 substrates, we utilized the yeast two-hybrid system to screen for human p35 binding partners. From one such screen, we identified beta-catenin as an interacting protein. Confirmation that p35 binds to beta-catenin was obtained by using glutathione S-transferase (GST)-beta-catenin fusion proteins that interacted with both endogenous and transfected p35, and by showing that beta-catenin was present in p35 immunoprecipitates. p35 and beta-catenin also displayed overlapping subcellular distribution patterns in cells including neurons. Finally, we demonstrated that p35/cdk5 phosphorylates beta-catenin. beta-catenin also binds to presenilin-1 and altered beta-catenin/presenilin-1 interactions may be mechanistic in Alzheimer's disease (AD). Abnormal p35/cdk5 activity has also been suggested to contribute to AD. We therefore investigated how modulation of p35/cdk5 activity influenced beta-catenin/presenilin-1 interactions. Inhibition of p35/cdk5 with roscovitine did not alter the steady state levels of either beta-catenin or presenilin-1 but reduced the amount of presenilin-1 bound to beta-catenin. Thus, p35/cdk5 binds and phosphorylates beta-catenin and regulates its binding to presenilin-1. The findings reported here therefore provide a novel molecular framework to connect p35/cdk5 with beta-catenin and presenilin-1 in AD.