双仿射Hecke代数

IF 1.3 1区 数学 Q1 MATHEMATICS
Braverman Alexander, V. F. Mikhail, Etingof Pavel
{"title":"双仿射Hecke代数","authors":"Braverman Alexander, V. F. Mikhail, Etingof Pavel","doi":"10.24033/ASENS.2446","DOIUrl":null,"url":null,"abstract":"We show that the partially spherical cyclotomic rational Cherednik algebra (obtained from the full rational Cherednik algebra by averaging out the cyclotomic part of the underlying reflection group) has four other descriptions: (1) as a subalgebra of the degenerate DAHA of type A given by generators; (2) as an algebra given by generators and relations; (3) as an algebra of differential-reflection operators preserving some spaces of functions; (4) as equivariant Borel-Moore homology of a certain variety. Also, we define a new $q$-deformation of this algebra, which we call cyclotomic DAHA. Namely, we give a $q$-deformation of each of the above four descriptions of the partially spherical rational Cherednik algebra, replacing differential operators with difference operators, degenerate DAHA with DAHA, and homology with K-theory, and show that they give the same algebra. In addition, we show that spherical cyclotomic DAHA are quantizations of certain multiplicative quiver and bow varieties, which may be interpreted as K-theoretic Coulomb branches of a framed quiver gauge theory. Finally, we apply cyclotomic DAHA to prove new flatness results for various kinds of spaces of $q$-deformed quasiinvariants. In the appendix by H. Nakajima and D. Yamakawa (added in version 2), the authors explain the relations between multiplicative bow varieties and (various versions of) multiplicative quiver varieties for a cyclic quiver.","PeriodicalId":50971,"journal":{"name":"Annales Scientifiques De L Ecole Normale Superieure","volume":"8 1","pages":"1249-1312"},"PeriodicalIF":1.3000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Cyclotomic double affine Hecke algebras\",\"authors\":\"Braverman Alexander, V. F. Mikhail, Etingof Pavel\",\"doi\":\"10.24033/ASENS.2446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the partially spherical cyclotomic rational Cherednik algebra (obtained from the full rational Cherednik algebra by averaging out the cyclotomic part of the underlying reflection group) has four other descriptions: (1) as a subalgebra of the degenerate DAHA of type A given by generators; (2) as an algebra given by generators and relations; (3) as an algebra of differential-reflection operators preserving some spaces of functions; (4) as equivariant Borel-Moore homology of a certain variety. Also, we define a new $q$-deformation of this algebra, which we call cyclotomic DAHA. Namely, we give a $q$-deformation of each of the above four descriptions of the partially spherical rational Cherednik algebra, replacing differential operators with difference operators, degenerate DAHA with DAHA, and homology with K-theory, and show that they give the same algebra. In addition, we show that spherical cyclotomic DAHA are quantizations of certain multiplicative quiver and bow varieties, which may be interpreted as K-theoretic Coulomb branches of a framed quiver gauge theory. Finally, we apply cyclotomic DAHA to prove new flatness results for various kinds of spaces of $q$-deformed quasiinvariants. In the appendix by H. Nakajima and D. Yamakawa (added in version 2), the authors explain the relations between multiplicative bow varieties and (various versions of) multiplicative quiver varieties for a cyclic quiver.\",\"PeriodicalId\":50971,\"journal\":{\"name\":\"Annales Scientifiques De L Ecole Normale Superieure\",\"volume\":\"8 1\",\"pages\":\"1249-1312\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Scientifiques De L Ecole Normale Superieure\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24033/ASENS.2446\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Scientifiques De L Ecole Normale Superieure","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ASENS.2446","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

摘要

我们证明了部分球面分环有理Cherednik代数(由下反射群的分环部分求平均值而得到)有四种其他描述:(1)作为生成器给出的a型退化DAHA的子代数;(2)作为由生成器和关系给出的代数;(3)作为保留函数空间的微分反射算子的代数;(4)为某品种的等变Borel-Moore同调。同时,我们定义了这个代数的一个新的$q$-变形,我们称之为环切DAHA。即对上述四种部分球面有理Cherednik代数的描述分别给出$q$-变形,用差分算子代替微分算子,用DAHA简并DAHA,用k理论同调,并证明它们给出了相同的代数。此外,我们还证明了球形分环DAHA是某些乘性颤振和弓变体的量子化,它们可以解释为框架颤振规范理论的k -理论库仑分支。最后,我们利用分环DAHA证明了各种$q$变形拟不变量空间的新的平面性结果。在中岛(H. Nakajima)和山川(D. Yamakawa)的附录中(在第2版中添加),作者解释了循环箭筒的乘法弓变体和(各种版本的)乘法箭变体之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclotomic double affine Hecke algebras
We show that the partially spherical cyclotomic rational Cherednik algebra (obtained from the full rational Cherednik algebra by averaging out the cyclotomic part of the underlying reflection group) has four other descriptions: (1) as a subalgebra of the degenerate DAHA of type A given by generators; (2) as an algebra given by generators and relations; (3) as an algebra of differential-reflection operators preserving some spaces of functions; (4) as equivariant Borel-Moore homology of a certain variety. Also, we define a new $q$-deformation of this algebra, which we call cyclotomic DAHA. Namely, we give a $q$-deformation of each of the above four descriptions of the partially spherical rational Cherednik algebra, replacing differential operators with difference operators, degenerate DAHA with DAHA, and homology with K-theory, and show that they give the same algebra. In addition, we show that spherical cyclotomic DAHA are quantizations of certain multiplicative quiver and bow varieties, which may be interpreted as K-theoretic Coulomb branches of a framed quiver gauge theory. Finally, we apply cyclotomic DAHA to prove new flatness results for various kinds of spaces of $q$-deformed quasiinvariants. In the appendix by H. Nakajima and D. Yamakawa (added in version 2), the authors explain the relations between multiplicative bow varieties and (various versions of) multiplicative quiver varieties for a cyclic quiver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Annales scientifiques de l''École normale supérieure were founded in 1864 by Louis Pasteur. The journal dealt with subjects touching on Physics, Chemistry and Natural Sciences. Around the turn of the century, it was decided that the journal should be devoted to Mathematics. Today, the Annales are open to all fields of mathematics. The Editorial Board, with the help of referees, selects articles which are mathematically very substantial. The Journal insists on maintaining a tradition of clarity and rigour in the exposition. The Annales scientifiques de l''École normale supérieures have been published by Gauthier-Villars unto 1997, then by Elsevier from 1999 to 2007. Since January 2008, they are published by the Société Mathématique de France.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信