谷歌趋势真的能改善房地产市场预测吗?

Christopher Limnios, Hao You
{"title":"谷歌趋势真的能改善房地产市场预测吗?","authors":"Christopher Limnios, Hao You","doi":"10.2139/ssrn.2886705","DOIUrl":null,"url":null,"abstract":"We augment linear pricing models for the housing market commonly used in the literature with google trends data in order to assess whether or not crowd-sourced search query data can improve the forecasting ability of the models. We compare various performance measures of the augmented linear model's out-of-sample, one-step ahead, dynamic forecasts against a baseline version. We find that augmenting the models to take advantage of the availability of Google trend data does not improve the forecasting performance of the models.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Can Google Trends Actually Improve Housing Market Forecasts?\",\"authors\":\"Christopher Limnios, Hao You\",\"doi\":\"10.2139/ssrn.2886705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We augment linear pricing models for the housing market commonly used in the literature with google trends data in order to assess whether or not crowd-sourced search query data can improve the forecasting ability of the models. We compare various performance measures of the augmented linear model's out-of-sample, one-step ahead, dynamic forecasts against a baseline version. We find that augmenting the models to take advantage of the availability of Google trend data does not improve the forecasting performance of the models.\",\"PeriodicalId\":11495,\"journal\":{\"name\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2886705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2886705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们用google趋势数据扩充了文献中常用的住房市场线性定价模型,以评估众包搜索查询数据是否可以提高模型的预测能力。我们比较了增强线性模型的样本外、提前一步、动态预测与基线版本的各种性能指标。我们发现,扩大模型以利用谷歌趋势数据的可用性并不能提高模型的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can Google Trends Actually Improve Housing Market Forecasts?
We augment linear pricing models for the housing market commonly used in the literature with google trends data in order to assess whether or not crowd-sourced search query data can improve the forecasting ability of the models. We compare various performance measures of the augmented linear model's out-of-sample, one-step ahead, dynamic forecasts against a baseline version. We find that augmenting the models to take advantage of the availability of Google trend data does not improve the forecasting performance of the models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信