具有多个可视化流形的拓扑映射

G. Grudic, J. Mulligan
{"title":"具有多个可视化流形的拓扑映射","authors":"G. Grudic, J. Mulligan","doi":"10.15607/RSS.2005.I.025","DOIUrl":null,"url":null,"abstract":"We address the problem of building topological maps in visual space for robot navigation. The nodes of our topological maps consist of clusters along manifolds, and we propose an unsupervised learning algorithm that automatically constructs these manifolds the user need only specify the desired number of clusters and the minimum number of images per cluster. This spectral clustering like framework allows each cluster to optimize a separate set of clustering parameters, and we demonstrate empirically that this flexibility can significantly improve clustering results. We further propose a framework for servoing the robot in our manifold space, which would allow the robot to navigate from any point on one manifold (topological node) to any specified point on a second manifold. Finally, we present experimental results on indoor and outdoor image sequences demonstrating the efficacy of the proposed algorithm.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"45 1","pages":"185-192"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Topological Mapping with Multiple Visual Manifolds\",\"authors\":\"G. Grudic, J. Mulligan\",\"doi\":\"10.15607/RSS.2005.I.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of building topological maps in visual space for robot navigation. The nodes of our topological maps consist of clusters along manifolds, and we propose an unsupervised learning algorithm that automatically constructs these manifolds the user need only specify the desired number of clusters and the minimum number of images per cluster. This spectral clustering like framework allows each cluster to optimize a separate set of clustering parameters, and we demonstrate empirically that this flexibility can significantly improve clustering results. We further propose a framework for servoing the robot in our manifold space, which would allow the robot to navigate from any point on one manifold (topological node) to any specified point on a second manifold. Finally, we present experimental results on indoor and outdoor image sequences demonstrating the efficacy of the proposed algorithm.\",\"PeriodicalId\":87357,\"journal\":{\"name\":\"Robotics science and systems : online proceedings\",\"volume\":\"45 1\",\"pages\":\"185-192\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics science and systems : online proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15607/RSS.2005.I.025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2005.I.025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们解决了在视觉空间中为机器人导航构建拓扑地图的问题。我们的拓扑地图的节点由沿着流形的簇组成,我们提出了一种无监督学习算法,该算法可以自动构建这些流形,用户只需要指定所需的簇数量和每个簇的最小图像数量。这种类似光谱聚类的框架允许每个聚类优化一组单独的聚类参数,我们的经验证明,这种灵活性可以显著提高聚类结果。我们进一步提出了一个在流形空间中为机器人服务的框架,该框架将允许机器人从一个流形(拓扑节点)上的任何点导航到第二个流形上的任何指定点。最后,我们给出了室内和室外图像序列的实验结果,证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological Mapping with Multiple Visual Manifolds
We address the problem of building topological maps in visual space for robot navigation. The nodes of our topological maps consist of clusters along manifolds, and we propose an unsupervised learning algorithm that automatically constructs these manifolds the user need only specify the desired number of clusters and the minimum number of images per cluster. This spectral clustering like framework allows each cluster to optimize a separate set of clustering parameters, and we demonstrate empirically that this flexibility can significantly improve clustering results. We further propose a framework for servoing the robot in our manifold space, which would allow the robot to navigate from any point on one manifold (topological node) to any specified point on a second manifold. Finally, we present experimental results on indoor and outdoor image sequences demonstrating the efficacy of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信