变压器在光学系统非线性通道补偿中的应用

ArXiv Pub Date : 2023-04-25 DOI:10.48550/arXiv.2304.13119
Behnam Behinaein Hamgini, H. Najafi, A. Bakhshali, Zhuhong Zhang
{"title":"变压器在光学系统非线性通道补偿中的应用","authors":"Behnam Behinaein Hamgini, H. Najafi, A. Bakhshali, Zhuhong Zhang","doi":"10.48550/arXiv.2304.13119","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new nonlinear channel equalization method for the coherent long-haul transmission based on Transformers. We show that due to their capability to attend directly to the memory across a sequence of symbols, Transformers can be used effectively with a parallelized structure. We present an implementation of encoder part of Transformer for nonlinear equalization and analyze its performance over a wide range of different hyper-parameters. It is shown that by processing blocks of symbols at each iteration and carefully selecting subsets of the encoder's output to be processed together, an efficient nonlinear compensation can be achieved. We also propose the use of a physic-informed mask inspired by nonlinear perturbation theory for reducing the computational complexity of Transformer nonlinear equalization.","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":"57 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of Transformers for Nonlinear Channel Compensation in Optical Systems\",\"authors\":\"Behnam Behinaein Hamgini, H. Najafi, A. Bakhshali, Zhuhong Zhang\",\"doi\":\"10.48550/arXiv.2304.13119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new nonlinear channel equalization method for the coherent long-haul transmission based on Transformers. We show that due to their capability to attend directly to the memory across a sequence of symbols, Transformers can be used effectively with a parallelized structure. We present an implementation of encoder part of Transformer for nonlinear equalization and analyze its performance over a wide range of different hyper-parameters. It is shown that by processing blocks of symbols at each iteration and carefully selecting subsets of the encoder's output to be processed together, an efficient nonlinear compensation can be achieved. We also propose the use of a physic-informed mask inspired by nonlinear perturbation theory for reducing the computational complexity of Transformer nonlinear equalization.\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"57 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2304.13119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.13119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的基于变压器的相干长途非线性信道均衡方法。我们表明,由于变形金刚能够跨符号序列直接处理内存,因此可以有效地与并行结构一起使用。提出了变压器中用于非线性均衡的编码器部分的实现,并分析了其在各种超参数下的性能。结果表明,通过在每次迭代中处理符号块并仔细选择编码器输出的子集一起处理,可以实现有效的非线性补偿。我们还提出了使用受非线性摄动理论启发的物理信息掩模来降低变压器非线性均衡的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Transformers for Nonlinear Channel Compensation in Optical Systems
In this paper, we introduce a new nonlinear channel equalization method for the coherent long-haul transmission based on Transformers. We show that due to their capability to attend directly to the memory across a sequence of symbols, Transformers can be used effectively with a parallelized structure. We present an implementation of encoder part of Transformer for nonlinear equalization and analyze its performance over a wide range of different hyper-parameters. It is shown that by processing blocks of symbols at each iteration and carefully selecting subsets of the encoder's output to be processed together, an efficient nonlinear compensation can be achieved. We also propose the use of a physic-informed mask inspired by nonlinear perturbation theory for reducing the computational complexity of Transformer nonlinear equalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信