一类涉及Riesz-Caputo分数阶导数的分数边值问题的分析

A. Boutiara, Naas Adjimi, Maamar Benbachir, Mohammed S Abdo
{"title":"一类涉及Riesz-Caputo分数阶导数的分数边值问题的分析","authors":"A. Boutiara, Naas Adjimi, Maamar Benbachir, Mohammed S Abdo","doi":"10.31197/atnaa.927938","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the existence and uniqueness of solutions for a class of fractional di(cid:27)erential equations with boundary conditions in the frame of Riesz-Caputo operators. We apply the methods of functional analysis such that the uniqueness result is established by using Banach’s contraction principle, whereas Schaefer’s and Krasnoslkii’s (cid:28)xed point theorems are applied to obtain existence results. Some examples are given to illustrate our acquired results.","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis of a fractional boundary value problem involving Riesz-Caputo fractional derivative\",\"authors\":\"A. Boutiara, Naas Adjimi, Maamar Benbachir, Mohammed S Abdo\",\"doi\":\"10.31197/atnaa.927938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the existence and uniqueness of solutions for a class of fractional di(cid:27)erential equations with boundary conditions in the frame of Riesz-Caputo operators. We apply the methods of functional analysis such that the uniqueness result is established by using Banach’s contraction principle, whereas Schaefer’s and Krasnoslkii’s (cid:28)xed point theorems are applied to obtain existence results. Some examples are given to illustrate our acquired results.\",\"PeriodicalId\":7440,\"journal\":{\"name\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31197/atnaa.927938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.927938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在Riesz-Caputo算子的框架下,研究了一类具有边界条件的分数阶di(cid:27)代方程解的存在唯一性。我们采用泛函分析的方法,利用Banach的收缩原理建立唯一性结果,而利用Schaefer和Krasnoslkii的(cid:28)共轭点定理获得存在性结果。给出了一些例子来说明我们得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of a fractional boundary value problem involving Riesz-Caputo fractional derivative
In this paper, we investigate the existence and uniqueness of solutions for a class of fractional di(cid:27)erential equations with boundary conditions in the frame of Riesz-Caputo operators. We apply the methods of functional analysis such that the uniqueness result is established by using Banach’s contraction principle, whereas Schaefer’s and Krasnoslkii’s (cid:28)xed point theorems are applied to obtain existence results. Some examples are given to illustrate our acquired results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信