基于二次推理函数的多变量加速失效时间模型的有效参数估计

Pub Date : 2019-10-23 DOI:10.1142/S2010326319500138
L. Fu, Zhuoran Yang, Mingtao Zhao, Yan Zhou
{"title":"基于二次推理函数的多变量加速失效时间模型的有效参数估计","authors":"L. Fu, Zhuoran Yang, Mingtao Zhao, Yan Zhou","doi":"10.1142/S2010326319500138","DOIUrl":null,"url":null,"abstract":"A popular approach, generalized estimating equations (GEE), has been applied to the multivariate accelerated failure time (AFT) model of the clustered and censored data. However, this method needs to estimate the correlation parameters and calculate the inverse of the correlation matrix. Meanwhile, the efficiency of the parameter estimators is low when the correlation structure is misspecified and/or the marginal distribution is heavy-tailed. This paper proposes using the quadratic inference functions (QIF) with a mixture correlation structure to estimate the coefficients in the multivariate AFT model, which can avoid estimating the correlation parameters and computing the inverse matrix of the correlation matrix. Moreover, the estimator derived from the QIF is consistent and asymptotically normal. Simulation studies indicate that the proposed method outperforms the method based on GEE when the marginal distribution has a heavy tail. Finally, the proposed method is used to analyze a real dataset for illustration.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient parameter estimation for multivariate accelerated failure time model via the quadratic inference functions method\",\"authors\":\"L. Fu, Zhuoran Yang, Mingtao Zhao, Yan Zhou\",\"doi\":\"10.1142/S2010326319500138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A popular approach, generalized estimating equations (GEE), has been applied to the multivariate accelerated failure time (AFT) model of the clustered and censored data. However, this method needs to estimate the correlation parameters and calculate the inverse of the correlation matrix. Meanwhile, the efficiency of the parameter estimators is low when the correlation structure is misspecified and/or the marginal distribution is heavy-tailed. This paper proposes using the quadratic inference functions (QIF) with a mixture correlation structure to estimate the coefficients in the multivariate AFT model, which can avoid estimating the correlation parameters and computing the inverse matrix of the correlation matrix. Moreover, the estimator derived from the QIF is consistent and asymptotically normal. Simulation studies indicate that the proposed method outperforms the method based on GEE when the marginal distribution has a heavy tail. Finally, the proposed method is used to analyze a real dataset for illustration.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010326319500138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326319500138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一种流行的方法,广义估计方程(GEE),已被应用于聚类和截尾数据的多元加速失效时间(AFT)模型。但是,该方法需要估计相关参数并计算相关矩阵的逆。同时,当相关结构不明确或边缘分布重尾时,参数估计器的效率较低。本文提出了一种混合相关结构的二次推理函数(QIF)来估计多元AFT模型的系数,避免了估计相关参数和计算相关矩阵的逆矩阵。此外,由QIF导出的估计量是一致的和渐近正态的。仿真研究表明,在边缘分布有重尾的情况下,该方法的性能优于基于GEE的方法。最后,用该方法对一个真实数据集进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Efficient parameter estimation for multivariate accelerated failure time model via the quadratic inference functions method
A popular approach, generalized estimating equations (GEE), has been applied to the multivariate accelerated failure time (AFT) model of the clustered and censored data. However, this method needs to estimate the correlation parameters and calculate the inverse of the correlation matrix. Meanwhile, the efficiency of the parameter estimators is low when the correlation structure is misspecified and/or the marginal distribution is heavy-tailed. This paper proposes using the quadratic inference functions (QIF) with a mixture correlation structure to estimate the coefficients in the multivariate AFT model, which can avoid estimating the correlation parameters and computing the inverse matrix of the correlation matrix. Moreover, the estimator derived from the QIF is consistent and asymptotically normal. Simulation studies indicate that the proposed method outperforms the method based on GEE when the marginal distribution has a heavy tail. Finally, the proposed method is used to analyze a real dataset for illustration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信