{"title":"地震研究中电离层扰动的目视探测","authors":"Fan Hong, Siming Chen, Hanqi Guo, Xiaoru Yuan, Jian Huang, Yongxian Zhang","doi":"10.1145/3139295.3139301","DOIUrl":null,"url":null,"abstract":"In seismic research, a hypothesis is that ionosphere disturbances are related to lithosphere activities such as earthquakes. Domain scientists are urgent to discover disturbance patterns of electromagnetic attributes in ionosphere around earthquakes, and to propose related hypotheses. However, the workflow of seismic researchers usually only supports pattern extraction from a few earthquakes. To explore the pattern-based hypotheses on a large spatiotemporal scale meets challenges, due to the limitation of their analysis tools. To tackle the problem, we develop a visual analytics system which not only supports pattern extraction of the original workflow in a way of dynamic query, but also extends the work with hypotheses exploration on a global scale. Domain scientists can easily utilize our system to explore the heterogeneous dataset, and to extract patterns and explore related hypotheses visually and interactively. We conduct several case studies to demonstrate the usage and effectiveness of our system in the research of relationships between ionosphere disturbances and earthquakes.","PeriodicalId":92446,"journal":{"name":"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Visual exploration of ionosphere disturbances for earthquake research\",\"authors\":\"Fan Hong, Siming Chen, Hanqi Guo, Xiaoru Yuan, Jian Huang, Yongxian Zhang\",\"doi\":\"10.1145/3139295.3139301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In seismic research, a hypothesis is that ionosphere disturbances are related to lithosphere activities such as earthquakes. Domain scientists are urgent to discover disturbance patterns of electromagnetic attributes in ionosphere around earthquakes, and to propose related hypotheses. However, the workflow of seismic researchers usually only supports pattern extraction from a few earthquakes. To explore the pattern-based hypotheses on a large spatiotemporal scale meets challenges, due to the limitation of their analysis tools. To tackle the problem, we develop a visual analytics system which not only supports pattern extraction of the original workflow in a way of dynamic query, but also extends the work with hypotheses exploration on a global scale. Domain scientists can easily utilize our system to explore the heterogeneous dataset, and to extract patterns and explore related hypotheses visually and interactively. We conduct several case studies to demonstrate the usage and effectiveness of our system in the research of relationships between ionosphere disturbances and earthquakes.\",\"PeriodicalId\":92446,\"journal\":{\"name\":\"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3139295.3139301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139295.3139301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visual exploration of ionosphere disturbances for earthquake research
In seismic research, a hypothesis is that ionosphere disturbances are related to lithosphere activities such as earthquakes. Domain scientists are urgent to discover disturbance patterns of electromagnetic attributes in ionosphere around earthquakes, and to propose related hypotheses. However, the workflow of seismic researchers usually only supports pattern extraction from a few earthquakes. To explore the pattern-based hypotheses on a large spatiotemporal scale meets challenges, due to the limitation of their analysis tools. To tackle the problem, we develop a visual analytics system which not only supports pattern extraction of the original workflow in a way of dynamic query, but also extends the work with hypotheses exploration on a global scale. Domain scientists can easily utilize our system to explore the heterogeneous dataset, and to extract patterns and explore related hypotheses visually and interactively. We conduct several case studies to demonstrate the usage and effectiveness of our system in the research of relationships between ionosphere disturbances and earthquakes.