U. A. Dodo, E. Ashigwuike, N. Gafai, Emmanuel M. Eronu, Abdullahi Yusuf Sada, Mustapha Alhaji Dodo
{"title":"某院校自主混合动力系统的优化设计","authors":"U. A. Dodo, E. Ashigwuike, N. Gafai, Emmanuel M. Eronu, Abdullahi Yusuf Sada, Mustapha Alhaji Dodo","doi":"10.24018/ejers.2020.5.10.2157","DOIUrl":null,"url":null,"abstract":"The epileptic power supply in Nigeria is enormously impeding universities’ administrative, academic, and research activities. The diesel generators on which most of these institutions rely as alternative power sources during grid failures are not viable solutions as the grid outage is incessant and the duration usually lasts for hours, at times for days. The effects of these are high running costs and increased environmental pollution. If normal activities in the universities are to continue unhindered and to reduce the health risks associated with the fossil-based generators, there is the need to explore other alternatives such as utilizing the environmentally-friendly, free and abundant renewable resources to meet their electricity demands. The present study uses Hybrid Optimization of Multiple Energy Resources (HOMER) to evaluate two different configurations of a stand-alone diesel generator (DG) system and a hybrid solar photovoltaic(PV)-diesel generator(DG)-battery energy storage (BES) system for sustainable power supply to the Baze University Abuja, Nigeria. The net present cost and levelized cost of energy, operating cost, and carbon dioxide emission of the hybrid PV-DG-BES system are lower by 50%, 30.93%, and 90% respectively when compared to the stand-alone DG system. Therefore, a hybrid solar PV-DG-BES system is a suitable technology to sustainably power the University.","PeriodicalId":12029,"journal":{"name":"European Journal of Engineering Research and Science","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimization of an Autonomous Hybrid Power System for an Academic Institution\",\"authors\":\"U. A. Dodo, E. Ashigwuike, N. Gafai, Emmanuel M. Eronu, Abdullahi Yusuf Sada, Mustapha Alhaji Dodo\",\"doi\":\"10.24018/ejers.2020.5.10.2157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The epileptic power supply in Nigeria is enormously impeding universities’ administrative, academic, and research activities. The diesel generators on which most of these institutions rely as alternative power sources during grid failures are not viable solutions as the grid outage is incessant and the duration usually lasts for hours, at times for days. The effects of these are high running costs and increased environmental pollution. If normal activities in the universities are to continue unhindered and to reduce the health risks associated with the fossil-based generators, there is the need to explore other alternatives such as utilizing the environmentally-friendly, free and abundant renewable resources to meet their electricity demands. The present study uses Hybrid Optimization of Multiple Energy Resources (HOMER) to evaluate two different configurations of a stand-alone diesel generator (DG) system and a hybrid solar photovoltaic(PV)-diesel generator(DG)-battery energy storage (BES) system for sustainable power supply to the Baze University Abuja, Nigeria. The net present cost and levelized cost of energy, operating cost, and carbon dioxide emission of the hybrid PV-DG-BES system are lower by 50%, 30.93%, and 90% respectively when compared to the stand-alone DG system. Therefore, a hybrid solar PV-DG-BES system is a suitable technology to sustainably power the University.\",\"PeriodicalId\":12029,\"journal\":{\"name\":\"European Journal of Engineering Research and Science\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Engineering Research and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24018/ejers.2020.5.10.2157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Engineering Research and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejers.2020.5.10.2157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of an Autonomous Hybrid Power System for an Academic Institution
The epileptic power supply in Nigeria is enormously impeding universities’ administrative, academic, and research activities. The diesel generators on which most of these institutions rely as alternative power sources during grid failures are not viable solutions as the grid outage is incessant and the duration usually lasts for hours, at times for days. The effects of these are high running costs and increased environmental pollution. If normal activities in the universities are to continue unhindered and to reduce the health risks associated with the fossil-based generators, there is the need to explore other alternatives such as utilizing the environmentally-friendly, free and abundant renewable resources to meet their electricity demands. The present study uses Hybrid Optimization of Multiple Energy Resources (HOMER) to evaluate two different configurations of a stand-alone diesel generator (DG) system and a hybrid solar photovoltaic(PV)-diesel generator(DG)-battery energy storage (BES) system for sustainable power supply to the Baze University Abuja, Nigeria. The net present cost and levelized cost of energy, operating cost, and carbon dioxide emission of the hybrid PV-DG-BES system are lower by 50%, 30.93%, and 90% respectively when compared to the stand-alone DG system. Therefore, a hybrid solar PV-DG-BES system is a suitable technology to sustainably power the University.