医学声学的深度特征学习

Alessandro Poire, Federico Simonetta, S. Ntalampiras
{"title":"医学声学的深度特征学习","authors":"Alessandro Poire, Federico Simonetta, S. Ntalampiras","doi":"10.48550/arXiv.2208.03084","DOIUrl":null,"url":null,"abstract":". The purpose of this paper is to compare different learnable frontends in medical acoustics tasks. A framework has been implemented to classify human respiratory sounds and heartbeats in two categories, i.e. healthy or affected by pathologies. After obtaining two suitable datasets, we proceeded to classify the sounds using two learnable state-of-art frontends – LEAF and nnAudio – plus a non-learnable baseline frontend, i.e. Mel-filterbanks. The computed features are then fed into two different CNN models, namely VGG16 and EfficientNet. The frontends are care-fully benchmarked in terms of the number of parameters, computational resources, and effectiveness. This work demonstrates how the integration of learnable frontends in neural audio classification systems may improve performance, especially in the field of medical acoustics. However, the usage of such frameworks makes the needed amount of data even larger. Consequently, they are useful if the amount of data available for training is adequately large to assist the feature learning process.","PeriodicalId":93416,"journal":{"name":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","volume":"24 1","pages":"39-50"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Feature Learning for Medical Acoustics\",\"authors\":\"Alessandro Poire, Federico Simonetta, S. Ntalampiras\",\"doi\":\"10.48550/arXiv.2208.03084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The purpose of this paper is to compare different learnable frontends in medical acoustics tasks. A framework has been implemented to classify human respiratory sounds and heartbeats in two categories, i.e. healthy or affected by pathologies. After obtaining two suitable datasets, we proceeded to classify the sounds using two learnable state-of-art frontends – LEAF and nnAudio – plus a non-learnable baseline frontend, i.e. Mel-filterbanks. The computed features are then fed into two different CNN models, namely VGG16 and EfficientNet. The frontends are care-fully benchmarked in terms of the number of parameters, computational resources, and effectiveness. This work demonstrates how the integration of learnable frontends in neural audio classification systems may improve performance, especially in the field of medical acoustics. However, the usage of such frameworks makes the needed amount of data even larger. Consequently, they are useful if the amount of data available for training is adequately large to assist the feature learning process.\",\"PeriodicalId\":93416,\"journal\":{\"name\":\"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)\",\"volume\":\"24 1\",\"pages\":\"39-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.03084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.03084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

. 本文的目的是比较医学声学任务中不同的可学前沿。已经实施了一个框架,将人类呼吸声音和心跳分为两类,即健康或受病理影响。在获得两个合适的数据集之后,我们继续使用两个可学习的最先进的前端(LEAF和nnAudio)以及一个不可学习的基线前端(即mel -filterbank)对声音进行分类。然后将计算出的特征输入到两个不同的CNN模型中,即VGG16和EfficientNet。前端在参数数量、计算资源和有效性方面进行了仔细的基准测试。这项工作证明了神经音频分类系统中可学习前端的集成如何提高性能,特别是在医学声学领域。然而,使用这样的框架会使所需的数据量变得更大。因此,如果可用于训练的数据量足够大,以辅助特征学习过程,则它们是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Feature Learning for Medical Acoustics
. The purpose of this paper is to compare different learnable frontends in medical acoustics tasks. A framework has been implemented to classify human respiratory sounds and heartbeats in two categories, i.e. healthy or affected by pathologies. After obtaining two suitable datasets, we proceeded to classify the sounds using two learnable state-of-art frontends – LEAF and nnAudio – plus a non-learnable baseline frontend, i.e. Mel-filterbanks. The computed features are then fed into two different CNN models, namely VGG16 and EfficientNet. The frontends are care-fully benchmarked in terms of the number of parameters, computational resources, and effectiveness. This work demonstrates how the integration of learnable frontends in neural audio classification systems may improve performance, especially in the field of medical acoustics. However, the usage of such frameworks makes the needed amount of data even larger. Consequently, they are useful if the amount of data available for training is adequately large to assist the feature learning process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信