{"title":"节点域数量的波动","authors":"F. Nazarov, M. Sodin","doi":"10.1063/5.0018588","DOIUrl":null,"url":null,"abstract":"We show that the variance of the number of connected components of the zero set of the two-dimensional Gaussian ensemble of random spherical harmonics of degree n grows as a positive power of n. The proof uses no special properties of spherical harmonics and works for any sufficiently regular ensemble of Gaussian random functions on the two-dimensional sphere with distribution invariant with respect to isometries of the sphere. \nOur argument connects the fluctuations in the number of nodal lines with those in a random loop ensemble on planar graphs of degree four, which can be viewed as a step towards justification of the Bogomolny-Schmit heuristics.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Fluctuations in the number of nodal domains\",\"authors\":\"F. Nazarov, M. Sodin\",\"doi\":\"10.1063/5.0018588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the variance of the number of connected components of the zero set of the two-dimensional Gaussian ensemble of random spherical harmonics of degree n grows as a positive power of n. The proof uses no special properties of spherical harmonics and works for any sufficiently regular ensemble of Gaussian random functions on the two-dimensional sphere with distribution invariant with respect to isometries of the sphere. \\nOur argument connects the fluctuations in the number of nodal lines with those in a random loop ensemble on planar graphs of degree four, which can be viewed as a step towards justification of the Bogomolny-Schmit heuristics.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0018588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0018588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that the variance of the number of connected components of the zero set of the two-dimensional Gaussian ensemble of random spherical harmonics of degree n grows as a positive power of n. The proof uses no special properties of spherical harmonics and works for any sufficiently regular ensemble of Gaussian random functions on the two-dimensional sphere with distribution invariant with respect to isometries of the sphere.
Our argument connects the fluctuations in the number of nodal lines with those in a random loop ensemble on planar graphs of degree four, which can be viewed as a step towards justification of the Bogomolny-Schmit heuristics.