StyleNet:用样式生成吸引人的视觉标题

Chuang Gan, Zhe Gan, Xiaodong He, Jianfeng Gao, L. Deng
{"title":"StyleNet:用样式生成吸引人的视觉标题","authors":"Chuang Gan, Zhe Gan, Xiaodong He, Jianfeng Gao, L. Deng","doi":"10.1109/CVPR.2017.108","DOIUrl":null,"url":null,"abstract":"We propose a novel framework named StyleNet to address the task of generating attractive captions for images and videos with different styles. To this end, we devise a novel model component, named factored LSTM, which automatically distills the style factors in the monolingual text corpus. Then at runtime, we can explicitly control the style in the caption generation process so as to produce attractive visual captions with the desired style. Our approach achieves this goal by leveraging two sets of data: 1) factual image/video-caption paired data, and 2) stylized monolingual text data (e.g., romantic and humorous sentences). We show experimentally that StyleNet outperforms existing approaches for generating visual captions with different styles, measured in both automatic and human evaluation metrics on the newly collected FlickrStyle10K image caption dataset, which contains 10K Flickr images with corresponding humorous and romantic captions.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"11 1","pages":"955-964"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"243","resultStr":"{\"title\":\"StyleNet: Generating Attractive Visual Captions with Styles\",\"authors\":\"Chuang Gan, Zhe Gan, Xiaodong He, Jianfeng Gao, L. Deng\",\"doi\":\"10.1109/CVPR.2017.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel framework named StyleNet to address the task of generating attractive captions for images and videos with different styles. To this end, we devise a novel model component, named factored LSTM, which automatically distills the style factors in the monolingual text corpus. Then at runtime, we can explicitly control the style in the caption generation process so as to produce attractive visual captions with the desired style. Our approach achieves this goal by leveraging two sets of data: 1) factual image/video-caption paired data, and 2) stylized monolingual text data (e.g., romantic and humorous sentences). We show experimentally that StyleNet outperforms existing approaches for generating visual captions with different styles, measured in both automatic and human evaluation metrics on the newly collected FlickrStyle10K image caption dataset, which contains 10K Flickr images with corresponding humorous and romantic captions.\",\"PeriodicalId\":6631,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"11 1\",\"pages\":\"955-964\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"243\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2017.108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 243

摘要

我们提出了一个名为StyleNet的新框架来解决为不同风格的图像和视频生成吸引人的字幕的任务。为此,我们设计了一种新的模型组件,命名为因子LSTM,它可以自动提取单语文本语料库中的风格因素。然后在运行时,我们可以显式地控制标题生成过程中的样式,从而生成具有所需样式的有吸引力的视觉标题。我们的方法通过利用两组数据来实现这一目标:1)事实图像/视频标题配对数据,以及2)风格化的单语文本数据(例如,浪漫和幽默的句子)。我们通过实验证明,StyleNet在生成不同风格的视觉字幕方面优于现有的方法,在新收集的FlickrStyle10K图像标题数据集上进行了自动和人工评估指标的测量,该数据集包含10K带有相应幽默和浪漫字幕的Flickr图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
StyleNet: Generating Attractive Visual Captions with Styles
We propose a novel framework named StyleNet to address the task of generating attractive captions for images and videos with different styles. To this end, we devise a novel model component, named factored LSTM, which automatically distills the style factors in the monolingual text corpus. Then at runtime, we can explicitly control the style in the caption generation process so as to produce attractive visual captions with the desired style. Our approach achieves this goal by leveraging two sets of data: 1) factual image/video-caption paired data, and 2) stylized monolingual text data (e.g., romantic and humorous sentences). We show experimentally that StyleNet outperforms existing approaches for generating visual captions with different styles, measured in both automatic and human evaluation metrics on the newly collected FlickrStyle10K image caption dataset, which contains 10K Flickr images with corresponding humorous and romantic captions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信