在造粒装置中分散时熔体流的衰减

V. Sklabinskiy, A. Artyukhov, M. Kononenko, J. Krmela
{"title":"在造粒装置中分散时熔体流的衰减","authors":"V. Sklabinskiy, A. Artyukhov, M. Kononenko, J. Krmela","doi":"10.2298/hemind190422025s","DOIUrl":null,"url":null,"abstract":"The aim of the article is a theoretical description and experimental study of the melt jet expiration process from a perforated shell of a vibrating granulator. Mathematical modeling of hydrodynamic flows was carried out based on the points of classical fluid and gas mechanics and technical hydromechanics. Reliability of the obtained experimental results is based on the application of time-tested in practice methods. Hydrodynamic properties of the liquid jet outflow were obtained. The presented mathematical model allows calculation of the radial component of the jet outflow velocity, as well as determination of the influences of physical and chemical properties of the liquid and the outflow hole diameter on the jet length and flow velocity along the axis to its disintegration into separated drops. The developed mathematical model extended with the theoretical description of the melt dispersion process from rotating perforated shells allowed us to improve design of the granulator to stabilize hydrodynamic parameters of the melt movement. The nitrogen fertilizers melt disperser was investigated regarding industrial-scale production and operating parameters of the process of jet decay into drops, drop size and monodispersity level were optimized.","PeriodicalId":9933,"journal":{"name":"Chemical Industry","volume":"159 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decay of the melt stream during dispersion in granulation devices\",\"authors\":\"V. Sklabinskiy, A. Artyukhov, M. Kononenko, J. Krmela\",\"doi\":\"10.2298/hemind190422025s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the article is a theoretical description and experimental study of the melt jet expiration process from a perforated shell of a vibrating granulator. Mathematical modeling of hydrodynamic flows was carried out based on the points of classical fluid and gas mechanics and technical hydromechanics. Reliability of the obtained experimental results is based on the application of time-tested in practice methods. Hydrodynamic properties of the liquid jet outflow were obtained. The presented mathematical model allows calculation of the radial component of the jet outflow velocity, as well as determination of the influences of physical and chemical properties of the liquid and the outflow hole diameter on the jet length and flow velocity along the axis to its disintegration into separated drops. The developed mathematical model extended with the theoretical description of the melt dispersion process from rotating perforated shells allowed us to improve design of the granulator to stabilize hydrodynamic parameters of the melt movement. The nitrogen fertilizers melt disperser was investigated regarding industrial-scale production and operating parameters of the process of jet decay into drops, drop size and monodispersity level were optimized.\",\"PeriodicalId\":9933,\"journal\":{\"name\":\"Chemical Industry\",\"volume\":\"159 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Industry\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.2298/hemind190422025s\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.2298/hemind190422025s","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是理论描述和实验研究的熔融射流从振动造粒机的穿孔壳呼气过程。基于经典流体力学和技术流体力学的观点,建立了流体动力流动的数学模型。所得到的实验结果的可靠性是建立在经过时间检验的实践方法的应用基础上的。得到了射流出口的流体力学特性。所提出的数学模型可以计算射流流出速度的径向分量,并确定液体的物理化学性质和流出孔直径对射流长度和沿轴流动速度的影响,从而使其分解成分离滴。所建立的数学模型扩展了熔体从旋转穿孔壳分散过程的理论描述,使我们能够改进造粒机的设计,以稳定熔体运动的流体动力学参数。以工业规模生产为背景,对氮肥熔体分散剂进行了研究,优化了喷流分解成液滴过程的操作参数、液滴大小和单分散度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decay of the melt stream during dispersion in granulation devices
The aim of the article is a theoretical description and experimental study of the melt jet expiration process from a perforated shell of a vibrating granulator. Mathematical modeling of hydrodynamic flows was carried out based on the points of classical fluid and gas mechanics and technical hydromechanics. Reliability of the obtained experimental results is based on the application of time-tested in practice methods. Hydrodynamic properties of the liquid jet outflow were obtained. The presented mathematical model allows calculation of the radial component of the jet outflow velocity, as well as determination of the influences of physical and chemical properties of the liquid and the outflow hole diameter on the jet length and flow velocity along the axis to its disintegration into separated drops. The developed mathematical model extended with the theoretical description of the melt dispersion process from rotating perforated shells allowed us to improve design of the granulator to stabilize hydrodynamic parameters of the melt movement. The nitrogen fertilizers melt disperser was investigated regarding industrial-scale production and operating parameters of the process of jet decay into drops, drop size and monodispersity level were optimized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信