具有控制碰撞和纯平面编织的线性运动规划

Jes'us Gonz'alez, B'arbara Guti'errez, Jos'e Luis Le'on-Medina, Christopher Roque
{"title":"具有控制碰撞和纯平面编织的线性运动规划","authors":"Jes'us Gonz'alez, B'arbara Guti'errez, Jos'e Luis Le'on-Medina, Christopher Roque","doi":"10.4310/hha.2021.v23.n1.a15","DOIUrl":null,"url":null,"abstract":"We compute the Lusternik-Schnirelmann category (LS-cat) and the higher topological complexity ($TC_s$, $s\\geq2$) of the \"no-$k$-equal\" configuration space Conf$_k(\\mathbb{R},n)$. This yields (with $k=3$) the LS-cat and the higher topological complexity of Khovanov's group PP$_n$ of pure planar braids on $n$ strands, which is an $\\mathbb{R}$-analogue of Artin's classical pure braid group on $n$ strands. Our methods can be used to describe optimal motion planners for PP$_n$ provided $n$ is small.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"150 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Linear motion planning with controlled collisions and pure planar braids\",\"authors\":\"Jes'us Gonz'alez, B'arbara Guti'errez, Jos'e Luis Le'on-Medina, Christopher Roque\",\"doi\":\"10.4310/hha.2021.v23.n1.a15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the Lusternik-Schnirelmann category (LS-cat) and the higher topological complexity ($TC_s$, $s\\\\geq2$) of the \\\"no-$k$-equal\\\" configuration space Conf$_k(\\\\mathbb{R},n)$. This yields (with $k=3$) the LS-cat and the higher topological complexity of Khovanov's group PP$_n$ of pure planar braids on $n$ strands, which is an $\\\\mathbb{R}$-analogue of Artin's classical pure braid group on $n$ strands. Our methods can be used to describe optimal motion planners for PP$_n$ provided $n$ is small.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2021.v23.n1.a15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/hha.2021.v23.n1.a15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们计算了“不- $k$ -相等”配置空间Conf $_k(\mathbb{R},n)$的Lusternik-Schnirelmann范畴(LS-cat)和更高的拓扑复杂度($TC_s$, $s\geq2$)。这产生了($k=3$) LS-cat和更高拓扑复杂性的Khovanov群体PP $_n$在$n$链上的纯平面编织,这是一个$\mathbb{R}$ -类似于Artin在$n$链上的经典纯编织群。我们的方法可以用来描述最优运动规划的PP $_n$提供$n$小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear motion planning with controlled collisions and pure planar braids
We compute the Lusternik-Schnirelmann category (LS-cat) and the higher topological complexity ($TC_s$, $s\geq2$) of the "no-$k$-equal" configuration space Conf$_k(\mathbb{R},n)$. This yields (with $k=3$) the LS-cat and the higher topological complexity of Khovanov's group PP$_n$ of pure planar braids on $n$ strands, which is an $\mathbb{R}$-analogue of Artin's classical pure braid group on $n$ strands. Our methods can be used to describe optimal motion planners for PP$_n$ provided $n$ is small.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信