Jes'us Gonz'alez, B'arbara Guti'errez, Jos'e Luis Le'on-Medina, Christopher Roque
{"title":"具有控制碰撞和纯平面编织的线性运动规划","authors":"Jes'us Gonz'alez, B'arbara Guti'errez, Jos'e Luis Le'on-Medina, Christopher Roque","doi":"10.4310/hha.2021.v23.n1.a15","DOIUrl":null,"url":null,"abstract":"We compute the Lusternik-Schnirelmann category (LS-cat) and the higher topological complexity ($TC_s$, $s\\geq2$) of the \"no-$k$-equal\" configuration space Conf$_k(\\mathbb{R},n)$. This yields (with $k=3$) the LS-cat and the higher topological complexity of Khovanov's group PP$_n$ of pure planar braids on $n$ strands, which is an $\\mathbb{R}$-analogue of Artin's classical pure braid group on $n$ strands. Our methods can be used to describe optimal motion planners for PP$_n$ provided $n$ is small.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"150 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Linear motion planning with controlled collisions and pure planar braids\",\"authors\":\"Jes'us Gonz'alez, B'arbara Guti'errez, Jos'e Luis Le'on-Medina, Christopher Roque\",\"doi\":\"10.4310/hha.2021.v23.n1.a15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the Lusternik-Schnirelmann category (LS-cat) and the higher topological complexity ($TC_s$, $s\\\\geq2$) of the \\\"no-$k$-equal\\\" configuration space Conf$_k(\\\\mathbb{R},n)$. This yields (with $k=3$) the LS-cat and the higher topological complexity of Khovanov's group PP$_n$ of pure planar braids on $n$ strands, which is an $\\\\mathbb{R}$-analogue of Artin's classical pure braid group on $n$ strands. Our methods can be used to describe optimal motion planners for PP$_n$ provided $n$ is small.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2021.v23.n1.a15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/hha.2021.v23.n1.a15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Linear motion planning with controlled collisions and pure planar braids
We compute the Lusternik-Schnirelmann category (LS-cat) and the higher topological complexity ($TC_s$, $s\geq2$) of the "no-$k$-equal" configuration space Conf$_k(\mathbb{R},n)$. This yields (with $k=3$) the LS-cat and the higher topological complexity of Khovanov's group PP$_n$ of pure planar braids on $n$ strands, which is an $\mathbb{R}$-analogue of Artin's classical pure braid group on $n$ strands. Our methods can be used to describe optimal motion planners for PP$_n$ provided $n$ is small.