实数Cayley-Dickson代数的正交图。第一部分:双可选零因子及其六边形

S. Zhilina
{"title":"实数Cayley-Dickson代数的正交图。第一部分:双可选零因子及其六边形","authors":"S. Zhilina","doi":"10.1142/S0218196721500326","DOIUrl":null,"url":null,"abstract":"We study zero divisors whose components alternate strongly pairwise and construct oriented hexagons in the zero divisor graph of an arbitrary real Cayley–Dickson algebra. In case of the algebras of the main sequence, the zero divisor graph coincides with the orthogonality graph, and any hexagon can be extended to a double hexagon. We determine the multiplication table of the vertices of a double hexagon. Then we find a sufficient condition for three elements to generate an alternative subalgebra of an arbitrary Cayley–Dickson algebra. Finally, we consider those zero divisors whose components are both standard basis elements up to sign. We classify them and determine necessary and sufficient conditions under which two such elements are orthogonal.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"32 1","pages":"663-689"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Orthogonality graphs of real Cayley-Dickson algebras. Part I: Doubly alternative zero divisors and their hexagons\",\"authors\":\"S. Zhilina\",\"doi\":\"10.1142/S0218196721500326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study zero divisors whose components alternate strongly pairwise and construct oriented hexagons in the zero divisor graph of an arbitrary real Cayley–Dickson algebra. In case of the algebras of the main sequence, the zero divisor graph coincides with the orthogonality graph, and any hexagon can be extended to a double hexagon. We determine the multiplication table of the vertices of a double hexagon. Then we find a sufficient condition for three elements to generate an alternative subalgebra of an arbitrary Cayley–Dickson algebra. Finally, we consider those zero divisors whose components are both standard basis elements up to sign. We classify them and determine necessary and sufficient conditions under which two such elements are orthogonal.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"32 1\",\"pages\":\"663-689\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218196721500326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218196721500326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

研究了任意实数Cayley-Dickson代数的零因子图中各分量强成对交替的零因子,构造了有向六边形。对于主序列的代数,零因子图与正交图重合,任何六边形都可以推广为双六边形。我们确定了一个双六边形顶点的乘法表。在此基础上,给出了生成任意Cayley-Dickson代数的可选子代数的三个元素的充分条件。最后,我们考虑那些分量都是标准基元的零因子。我们对它们进行了分类,并确定了两个这样的元素正交的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthogonality graphs of real Cayley-Dickson algebras. Part I: Doubly alternative zero divisors and their hexagons
We study zero divisors whose components alternate strongly pairwise and construct oriented hexagons in the zero divisor graph of an arbitrary real Cayley–Dickson algebra. In case of the algebras of the main sequence, the zero divisor graph coincides with the orthogonality graph, and any hexagon can be extended to a double hexagon. We determine the multiplication table of the vertices of a double hexagon. Then we find a sufficient condition for three elements to generate an alternative subalgebra of an arbitrary Cayley–Dickson algebra. Finally, we consider those zero divisors whose components are both standard basis elements up to sign. We classify them and determine necessary and sufficient conditions under which two such elements are orthogonal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信