{"title":"一种基于信任和声誉因子的无线传感器网络节能虫洞攻击防御协议","authors":"Saad Al-Ahmadi","doi":"10.5220/0010951400003118","DOIUrl":null,"url":null,"abstract":"The deployment of Wireless Sensor Networks (WSNs) for the Internet of Things (IoT) is important, but this also poses some security issues. Wireless Sensor Networks (WSNs) are vulnerable to various attacks, such as the Wormhole attack. The Wormhole attack is one of the most severe attacks on WSNs that is particularly challenging to defend against even when the communication is authentic, and sensors are not compromised. Existing techniques to detect and protect against Wormhole attacks place a substantial burden on the scarce sensor resources and do not consider the dynamic nature of the network. In this paper, a novel Energy Efficient Wormhole Attack Prevention Protocol (EWATR) is proposed to protect WSNs against Wormhole attacks. EWATR is based on trust and reputation among WSN nodes that consider the dynamic nature of the network. This study also compares EWATR against several state-of-the-art trust and reputation models through extensive simulations using the TRMSim-WSN simulator. Eventually, the simulation results show the superiority of EWATR over other proposed protocols in terms of efficient energy consumption and shorter","PeriodicalId":72028,"journal":{"name":"... International Conference on Wearable and Implantable Body Sensor Networks. International Conference on Wearable and Implantable Body Sensor Networks","volume":"21 1","pages":"191-201"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Energy-efficient Wormhole Attack Prevention Protocol for WSN based on Trust and Reputation Factors\",\"authors\":\"Saad Al-Ahmadi\",\"doi\":\"10.5220/0010951400003118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deployment of Wireless Sensor Networks (WSNs) for the Internet of Things (IoT) is important, but this also poses some security issues. Wireless Sensor Networks (WSNs) are vulnerable to various attacks, such as the Wormhole attack. The Wormhole attack is one of the most severe attacks on WSNs that is particularly challenging to defend against even when the communication is authentic, and sensors are not compromised. Existing techniques to detect and protect against Wormhole attacks place a substantial burden on the scarce sensor resources and do not consider the dynamic nature of the network. In this paper, a novel Energy Efficient Wormhole Attack Prevention Protocol (EWATR) is proposed to protect WSNs against Wormhole attacks. EWATR is based on trust and reputation among WSN nodes that consider the dynamic nature of the network. This study also compares EWATR against several state-of-the-art trust and reputation models through extensive simulations using the TRMSim-WSN simulator. Eventually, the simulation results show the superiority of EWATR over other proposed protocols in terms of efficient energy consumption and shorter\",\"PeriodicalId\":72028,\"journal\":{\"name\":\"... International Conference on Wearable and Implantable Body Sensor Networks. International Conference on Wearable and Implantable Body Sensor Networks\",\"volume\":\"21 1\",\"pages\":\"191-201\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... International Conference on Wearable and Implantable Body Sensor Networks. International Conference on Wearable and Implantable Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0010951400003118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Conference on Wearable and Implantable Body Sensor Networks. International Conference on Wearable and Implantable Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010951400003118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Energy-efficient Wormhole Attack Prevention Protocol for WSN based on Trust and Reputation Factors
The deployment of Wireless Sensor Networks (WSNs) for the Internet of Things (IoT) is important, but this also poses some security issues. Wireless Sensor Networks (WSNs) are vulnerable to various attacks, such as the Wormhole attack. The Wormhole attack is one of the most severe attacks on WSNs that is particularly challenging to defend against even when the communication is authentic, and sensors are not compromised. Existing techniques to detect and protect against Wormhole attacks place a substantial burden on the scarce sensor resources and do not consider the dynamic nature of the network. In this paper, a novel Energy Efficient Wormhole Attack Prevention Protocol (EWATR) is proposed to protect WSNs against Wormhole attacks. EWATR is based on trust and reputation among WSN nodes that consider the dynamic nature of the network. This study also compares EWATR against several state-of-the-art trust and reputation models through extensive simulations using the TRMSim-WSN simulator. Eventually, the simulation results show the superiority of EWATR over other proposed protocols in terms of efficient energy consumption and shorter