异常检测的信息论方法

Wenke Lee, Dong Xiang
{"title":"异常检测的信息论方法","authors":"Wenke Lee, Dong Xiang","doi":"10.1109/SECPRI.2001.924294","DOIUrl":null,"url":null,"abstract":"Anomaly detection is an essential component of protection mechanisms against novel attacks. We propose to use several information-theoretic measures, namely, entropy, conditional entropy, relative conditional entropy, information gain, and information cost for anomaly detection. These measures can be used to describe the characteristics of an audit data set, suggest the appropriate anomaly detection model(s) to be built, and explain the performance of the model(s). We use case studies on Unix system call data, BSM data, and network tcpdump data to illustrate the utilities of these measures.","PeriodicalId":20502,"journal":{"name":"Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001","volume":"47 1","pages":"130-143"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"638","resultStr":"{\"title\":\"Information-theoretic measures for anomaly detection\",\"authors\":\"Wenke Lee, Dong Xiang\",\"doi\":\"10.1109/SECPRI.2001.924294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection is an essential component of protection mechanisms against novel attacks. We propose to use several information-theoretic measures, namely, entropy, conditional entropy, relative conditional entropy, information gain, and information cost for anomaly detection. These measures can be used to describe the characteristics of an audit data set, suggest the appropriate anomaly detection model(s) to be built, and explain the performance of the model(s). We use case studies on Unix system call data, BSM data, and network tcpdump data to illustrate the utilities of these measures.\",\"PeriodicalId\":20502,\"journal\":{\"name\":\"Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001\",\"volume\":\"47 1\",\"pages\":\"130-143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"638\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECPRI.2001.924294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECPRI.2001.924294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 638

摘要

异常检测是防范新型攻击的重要组成部分。我们建议使用几个信息理论度量,即熵、条件熵、相对条件熵、信息增益和信息成本来进行异常检测。这些度量可用于描述审计数据集的特征,建议要构建的适当异常检测模型,并解释模型的性能。我们使用Unix系统调用数据、BSM数据和网络tcpdump数据的案例研究来说明这些度量的实用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information-theoretic measures for anomaly detection
Anomaly detection is an essential component of protection mechanisms against novel attacks. We propose to use several information-theoretic measures, namely, entropy, conditional entropy, relative conditional entropy, information gain, and information cost for anomaly detection. These measures can be used to describe the characteristics of an audit data set, suggest the appropriate anomaly detection model(s) to be built, and explain the performance of the model(s). We use case studies on Unix system call data, BSM data, and network tcpdump data to illustrate the utilities of these measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信