Hadi Priyono, Retno Sari, Tati Mardiana
{"title":"Klasifikasi Pemilihan Jurusan Sekolah Menengah Kejuruan Menggunakan Gradient Boosting Classifier","authors":"Hadi Priyono, Retno Sari, Tati Mardiana","doi":"10.31294/inf.v9i2.12654","DOIUrl":null,"url":null,"abstract":"The selection of the majors remains a crucial factor for prospective students who will pursue their education at SMK. However, students tend to follow the choices of their parents or friends. They are not considering the curriculum according to their interests and abilities. As a result, many students have difficulties following the lesson, and their academic achievement decreases. The RIASEC model is one of the interest detection methods used to determine the student's personality type. This study aims to develop a model to predict the choice of majors at SMK Yadika 12 Depok. We compared five classifiers on the major's selection data sets at vocational schools. In addition, we performed hyperparameter tuning using GridsearchCV to obtain the most influential parameters from the selected classification algorithm. The algorithms implemented are Multinomial Naive Bayes, Gaussian Naive Bayes, Bernoulli Naive Bayes, Gradient Boosting Classifier, Decision Tree Classifier, K Neighbors Classifier, and Logistic Regression. The test results show that the Gradient Boosting Classifier with Hyperparameter Tuning using GridSearchCV maintains an accuracy of 72% and class recall reaches 76%.","PeriodicalId":32029,"journal":{"name":"Proxies Jurnal Informatika","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proxies Jurnal Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31294/inf.v9i2.12654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

专业的选择仍然是未来的学生谁将在SMK继续他们的教育的关键因素。然而,学生倾向于遵循他们的父母或朋友的选择。他们没有根据自己的兴趣和能力来考虑课程设置。因此,许多学生在课堂上有困难,他们的学习成绩下降。RIASEC模型是一种用于确定学生人格类型的兴趣检测方法。本研究旨在建立一个模型来预测SMK Yadika 12 Depok的专业选择。我们比较了职业学校专业选择数据集上的五个分类器。此外,我们使用GridsearchCV进行超参数调优,以从所选分类算法中获得最具影响力的参数。实现的算法有多项朴素贝叶斯、高斯朴素贝叶斯、伯努利朴素贝叶斯、梯度增强分类器、决策树分类器、K近邻分类器和逻辑回归。测试结果表明,使用GridSearchCV进行超参数调优的梯度增强分类器保持了72%的准确率,类召回率达到76%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Klasifikasi Pemilihan Jurusan Sekolah Menengah Kejuruan Menggunakan Gradient Boosting Classifier
The selection of the majors remains a crucial factor for prospective students who will pursue their education at SMK. However, students tend to follow the choices of their parents or friends. They are not considering the curriculum according to their interests and abilities. As a result, many students have difficulties following the lesson, and their academic achievement decreases. The RIASEC model is one of the interest detection methods used to determine the student's personality type. This study aims to develop a model to predict the choice of majors at SMK Yadika 12 Depok. We compared five classifiers on the major's selection data sets at vocational schools. In addition, we performed hyperparameter tuning using GridsearchCV to obtain the most influential parameters from the selected classification algorithm. The algorithms implemented are Multinomial Naive Bayes, Gaussian Naive Bayes, Bernoulli Naive Bayes, Gradient Boosting Classifier, Decision Tree Classifier, K Neighbors Classifier, and Logistic Regression. The test results show that the Gradient Boosting Classifier with Hyperparameter Tuning using GridSearchCV maintains an accuracy of 72% and class recall reaches 76%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信