{"title":"某些富中子核的弹性形状因子和物质密度分布","authors":"Hawraa K. Mahdi, A. Abdullah","doi":"10.30723/ijp.v20i4.1013","DOIUrl":null,"url":null,"abstract":"The ground-state properties of exotic 18N and 20F nuclei, including the neutron, proton and matter densities and related radii are investigated using the two-body model of within Gaussian (GS) and Woods Saxon (WS) wave functions. The long tail is evident in the computed neutron and matter densities of these nuclei. The plane wave Born approximation (PWBA) is calculate the elastic form factors of these exotic nuclei. The variation in the proton density distributions due to the presence of the extra neutrons in 18N and 20F leads to a major difference between the elastic form factors of these exotic nuclei and their stable isotopes 14N and 19F. The reaction cross sections for these nuclei are investigated using the Kox and Glauber models. Furthermore, the Glauber model is employed to calculate the matter radii of these exotic nuclei. The calculated results for the selected exotic nuclei are in a good agreement with the experimental data. ","PeriodicalId":14653,"journal":{"name":"Iraqi Journal of Physics (IJP)","volume":"156 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic Form Factors and Matter Density Distributions of Some Neutron-Rich Nuclei\",\"authors\":\"Hawraa K. Mahdi, A. Abdullah\",\"doi\":\"10.30723/ijp.v20i4.1013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ground-state properties of exotic 18N and 20F nuclei, including the neutron, proton and matter densities and related radii are investigated using the two-body model of within Gaussian (GS) and Woods Saxon (WS) wave functions. The long tail is evident in the computed neutron and matter densities of these nuclei. The plane wave Born approximation (PWBA) is calculate the elastic form factors of these exotic nuclei. The variation in the proton density distributions due to the presence of the extra neutrons in 18N and 20F leads to a major difference between the elastic form factors of these exotic nuclei and their stable isotopes 14N and 19F. The reaction cross sections for these nuclei are investigated using the Kox and Glauber models. Furthermore, the Glauber model is employed to calculate the matter radii of these exotic nuclei. The calculated results for the selected exotic nuclei are in a good agreement with the experimental data. \",\"PeriodicalId\":14653,\"journal\":{\"name\":\"Iraqi Journal of Physics (IJP)\",\"volume\":\"156 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iraqi Journal of Physics (IJP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30723/ijp.v20i4.1013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Physics (IJP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30723/ijp.v20i4.1013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Elastic Form Factors and Matter Density Distributions of Some Neutron-Rich Nuclei
The ground-state properties of exotic 18N and 20F nuclei, including the neutron, proton and matter densities and related radii are investigated using the two-body model of within Gaussian (GS) and Woods Saxon (WS) wave functions. The long tail is evident in the computed neutron and matter densities of these nuclei. The plane wave Born approximation (PWBA) is calculate the elastic form factors of these exotic nuclei. The variation in the proton density distributions due to the presence of the extra neutrons in 18N and 20F leads to a major difference between the elastic form factors of these exotic nuclei and their stable isotopes 14N and 19F. The reaction cross sections for these nuclei are investigated using the Kox and Glauber models. Furthermore, the Glauber model is employed to calculate the matter radii of these exotic nuclei. The calculated results for the selected exotic nuclei are in a good agreement with the experimental data.