{"title":"由低到高的SMGTJ方程的最优正则性与Dirichlet和Neumann边界控制,并与点控制,通过显式表示公式","authors":"R. Triggiani, X. Wan","doi":"10.3934/eect.2022007","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We consider the linear third order (in time) PDE known as the SMGTJ-equation, defined on a bounded domain, under the action of either Dirichlet or Neumann boundary control <inline-formula><tex-math id=\"M1\">\\begin{document}$ g $\\end{document}</tex-math></inline-formula>. Optimal interior and boundary regularity results were given in [<xref ref-type=\"bibr\" rid=\"b1\">1</xref>], after [<xref ref-type=\"bibr\" rid=\"b41\">41</xref>], when <inline-formula><tex-math id=\"M2\">\\begin{document}$ g \\in L^2(0, T;L^2(\\Gamma)) \\equiv L^2(\\Sigma) $\\end{document}</tex-math></inline-formula>, which, moreover, in the canonical case <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\gamma = 0 $\\end{document}</tex-math></inline-formula>, were expressed by the well-known explicit representation formulae of the wave equation in terms of cosine/sine operators [<xref ref-type=\"bibr\" rid=\"b19\">19</xref>], [<xref ref-type=\"bibr\" rid=\"b17\">17</xref>], [<xref ref-type=\"bibr\" rid=\"b24\">24</xref>,Vol Ⅱ]. The interior or boundary regularity theory is however the same, whether <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\gamma = 0 $\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M5\">\\begin{document}$ 0 \\neq \\gamma \\in L^{\\infty}(\\Omega) $\\end{document}</tex-math></inline-formula>, since <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\gamma \\neq 0 $\\end{document}</tex-math></inline-formula> is responsible only for lower order terms. Here we exploit such cosine operator based-explicit representation formulae to provide optimal interior and boundary regularity results with <inline-formula><tex-math id=\"M7\">\\begin{document}$ g $\\end{document}</tex-math></inline-formula> \"smoother\" than <inline-formula><tex-math id=\"M8\">\\begin{document}$ L^2(\\Sigma) $\\end{document}</tex-math></inline-formula>, qualitatively by one unit, two units, etc. in the Dirichlet boundary case. To this end, we invoke the corresponding results for wave equations, as in [<xref ref-type=\"bibr\" rid=\"b17\">17</xref>]. Similarly for the Neumann boundary case, by invoking the corresponding results for the wave equation as in [<xref ref-type=\"bibr\" rid=\"b22\">22</xref>], [<xref ref-type=\"bibr\" rid=\"b23\">23</xref>], [<xref ref-type=\"bibr\" rid=\"b37\">37</xref>] for control smoother than <inline-formula><tex-math id=\"M9\">\\begin{document}$ L^2(0, T;L^2(\\Gamma)) $\\end{document}</tex-math></inline-formula>, and [<xref ref-type=\"bibr\" rid=\"b44\">44</xref>] for control less regular in space than <inline-formula><tex-math id=\"M10\">\\begin{document}$ L^2(\\Gamma) $\\end{document}</tex-math></inline-formula>. In addition, we provide optimal interior and boundary regularity results when the SMGTJ equation is subject to interior point control, by invoking the corresponding wave equations results [<xref ref-type=\"bibr\" rid=\"b42\">42</xref>], [<xref ref-type=\"bibr\" rid=\"b24\">24</xref>,Section 9.8.2].</p>","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"34 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"From low to high-and lower-optimal regularity of the SMGTJ equation with Dirichlet and Neumann boundary control, and with point control, via explicit representation formulae\",\"authors\":\"R. Triggiani, X. Wan\",\"doi\":\"10.3934/eect.2022007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We consider the linear third order (in time) PDE known as the SMGTJ-equation, defined on a bounded domain, under the action of either Dirichlet or Neumann boundary control <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ g $\\\\end{document}</tex-math></inline-formula>. Optimal interior and boundary regularity results were given in [<xref ref-type=\\\"bibr\\\" rid=\\\"b1\\\">1</xref>], after [<xref ref-type=\\\"bibr\\\" rid=\\\"b41\\\">41</xref>], when <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ g \\\\in L^2(0, T;L^2(\\\\Gamma)) \\\\equiv L^2(\\\\Sigma) $\\\\end{document}</tex-math></inline-formula>, which, moreover, in the canonical case <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\gamma = 0 $\\\\end{document}</tex-math></inline-formula>, were expressed by the well-known explicit representation formulae of the wave equation in terms of cosine/sine operators [<xref ref-type=\\\"bibr\\\" rid=\\\"b19\\\">19</xref>], [<xref ref-type=\\\"bibr\\\" rid=\\\"b17\\\">17</xref>], [<xref ref-type=\\\"bibr\\\" rid=\\\"b24\\\">24</xref>,Vol Ⅱ]. The interior or boundary regularity theory is however the same, whether <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\gamma = 0 $\\\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ 0 \\\\neq \\\\gamma \\\\in L^{\\\\infty}(\\\\Omega) $\\\\end{document}</tex-math></inline-formula>, since <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ \\\\gamma \\\\neq 0 $\\\\end{document}</tex-math></inline-formula> is responsible only for lower order terms. Here we exploit such cosine operator based-explicit representation formulae to provide optimal interior and boundary regularity results with <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ g $\\\\end{document}</tex-math></inline-formula> \\\"smoother\\\" than <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ L^2(\\\\Sigma) $\\\\end{document}</tex-math></inline-formula>, qualitatively by one unit, two units, etc. in the Dirichlet boundary case. To this end, we invoke the corresponding results for wave equations, as in [<xref ref-type=\\\"bibr\\\" rid=\\\"b17\\\">17</xref>]. Similarly for the Neumann boundary case, by invoking the corresponding results for the wave equation as in [<xref ref-type=\\\"bibr\\\" rid=\\\"b22\\\">22</xref>], [<xref ref-type=\\\"bibr\\\" rid=\\\"b23\\\">23</xref>], [<xref ref-type=\\\"bibr\\\" rid=\\\"b37\\\">37</xref>] for control smoother than <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ L^2(0, T;L^2(\\\\Gamma)) $\\\\end{document}</tex-math></inline-formula>, and [<xref ref-type=\\\"bibr\\\" rid=\\\"b44\\\">44</xref>] for control less regular in space than <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ L^2(\\\\Gamma) $\\\\end{document}</tex-math></inline-formula>. In addition, we provide optimal interior and boundary regularity results when the SMGTJ equation is subject to interior point control, by invoking the corresponding wave equations results [<xref ref-type=\\\"bibr\\\" rid=\\\"b42\\\">42</xref>], [<xref ref-type=\\\"bibr\\\" rid=\\\"b24\\\">24</xref>,Section 9.8.2].</p>\",\"PeriodicalId\":48833,\"journal\":{\"name\":\"Evolution Equations and Control Theory\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Equations and Control Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2022007\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Equations and Control Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2022007","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
We consider the linear third order (in time) PDE known as the SMGTJ-equation, defined on a bounded domain, under the action of either Dirichlet or Neumann boundary control \begin{document}$ g $\end{document}. Optimal interior and boundary regularity results were given in [1], after [41], when \begin{document}$ g \in L^2(0, T;L^2(\Gamma)) \equiv L^2(\Sigma) $\end{document}, which, moreover, in the canonical case \begin{document}$ \gamma = 0 $\end{document}, were expressed by the well-known explicit representation formulae of the wave equation in terms of cosine/sine operators [19], [17], [24,Vol Ⅱ]. The interior or boundary regularity theory is however the same, whether \begin{document}$ \gamma = 0 $\end{document} or \begin{document}$ 0 \neq \gamma \in L^{\infty}(\Omega) $\end{document}, since \begin{document}$ \gamma \neq 0 $\end{document} is responsible only for lower order terms. Here we exploit such cosine operator based-explicit representation formulae to provide optimal interior and boundary regularity results with \begin{document}$ g $\end{document} "smoother" than \begin{document}$ L^2(\Sigma) $\end{document}, qualitatively by one unit, two units, etc. in the Dirichlet boundary case. To this end, we invoke the corresponding results for wave equations, as in [17]. Similarly for the Neumann boundary case, by invoking the corresponding results for the wave equation as in [22], [23], [37] for control smoother than \begin{document}$ L^2(0, T;L^2(\Gamma)) $\end{document}, and [44] for control less regular in space than \begin{document}$ L^2(\Gamma) $\end{document}. In addition, we provide optimal interior and boundary regularity results when the SMGTJ equation is subject to interior point control, by invoking the corresponding wave equations results [42], [24,Section 9.8.2].
From low to high-and lower-optimal regularity of the SMGTJ equation with Dirichlet and Neumann boundary control, and with point control, via explicit representation formulae
We consider the linear third order (in time) PDE known as the SMGTJ-equation, defined on a bounded domain, under the action of either Dirichlet or Neumann boundary control \begin{document}$ g $\end{document}. Optimal interior and boundary regularity results were given in [1], after [41], when \begin{document}$ g \in L^2(0, T;L^2(\Gamma)) \equiv L^2(\Sigma) $\end{document}, which, moreover, in the canonical case \begin{document}$ \gamma = 0 $\end{document}, were expressed by the well-known explicit representation formulae of the wave equation in terms of cosine/sine operators [19], [17], [24,Vol Ⅱ]. The interior or boundary regularity theory is however the same, whether \begin{document}$ \gamma = 0 $\end{document} or \begin{document}$ 0 \neq \gamma \in L^{\infty}(\Omega) $\end{document}, since \begin{document}$ \gamma \neq 0 $\end{document} is responsible only for lower order terms. Here we exploit such cosine operator based-explicit representation formulae to provide optimal interior and boundary regularity results with \begin{document}$ g $\end{document} "smoother" than \begin{document}$ L^2(\Sigma) $\end{document}, qualitatively by one unit, two units, etc. in the Dirichlet boundary case. To this end, we invoke the corresponding results for wave equations, as in [17]. Similarly for the Neumann boundary case, by invoking the corresponding results for the wave equation as in [22], [23], [37] for control smoother than \begin{document}$ L^2(0, T;L^2(\Gamma)) $\end{document}, and [44] for control less regular in space than \begin{document}$ L^2(\Gamma) $\end{document}. In addition, we provide optimal interior and boundary regularity results when the SMGTJ equation is subject to interior point control, by invoking the corresponding wave equations results [42], [24,Section 9.8.2].
期刊介绍:
EECT is primarily devoted to papers on analysis and control of infinite dimensional systems with emphasis on applications to PDE''s and FDEs. Topics include:
* Modeling of physical systems as infinite-dimensional processes
* Direct problems such as existence, regularity and well-posedness
* Stability, long-time behavior and associated dynamical attractors
* Indirect problems such as exact controllability, reachability theory and inverse problems
* Optimization - including shape optimization - optimal control, game theory and calculus of variations
* Well-posedness, stability and control of coupled systems with an interface. Free boundary problems and problems with moving interface(s)
* Applications of the theory to physics, chemistry, engineering, economics, medicine and biology