基于模糊系统的多目标设计优化新方法

IF 1.9 4区 数学 Q1 MATHEMATICS
M. R. Setayandeh, A. Babaei
{"title":"基于模糊系统的多目标设计优化新方法","authors":"M. R. Setayandeh, A. Babaei","doi":"10.22111/IJFS.2021.6264","DOIUrl":null,"url":null,"abstract":"A novel strategy to design optimization is expressed using the fuzzy preference function concept. This method efficiently uses the designer’s experiences by preference functions and it is also able to transform a constrained multi-objective optimization problem into an unconstrained single-objective optimization problem. These two issues are the most important features of the proposed method which using them, you can achieve a more practical solution in less time. To implement the proposed method, two design optimizations of an unmanned aerial vehicle are considered which are: deterministic and non-deterministic optimizations. The optimization problem in this paper is a constrained multi\u0002objective problem that with attention to the ability of genetic algorithm, this algorithm is selected as the optimizer. Uncertainties are considered and the Monte Carlo simulation (MCS) method is used for uncertainties modeling. The obtained results show a good performance of this technique in achieving optimal and robust solutions.","PeriodicalId":54920,"journal":{"name":"Iranian Journal of Fuzzy Systems","volume":"2010 1","pages":"181-198"},"PeriodicalIF":1.9000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel method for multi-objective design optimization based on fuzzy systems\",\"authors\":\"M. R. Setayandeh, A. Babaei\",\"doi\":\"10.22111/IJFS.2021.6264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel strategy to design optimization is expressed using the fuzzy preference function concept. This method efficiently uses the designer’s experiences by preference functions and it is also able to transform a constrained multi-objective optimization problem into an unconstrained single-objective optimization problem. These two issues are the most important features of the proposed method which using them, you can achieve a more practical solution in less time. To implement the proposed method, two design optimizations of an unmanned aerial vehicle are considered which are: deterministic and non-deterministic optimizations. The optimization problem in this paper is a constrained multi\\u0002objective problem that with attention to the ability of genetic algorithm, this algorithm is selected as the optimizer. Uncertainties are considered and the Monte Carlo simulation (MCS) method is used for uncertainties modeling. The obtained results show a good performance of this technique in achieving optimal and robust solutions.\",\"PeriodicalId\":54920,\"journal\":{\"name\":\"Iranian Journal of Fuzzy Systems\",\"volume\":\"2010 1\",\"pages\":\"181-198\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Fuzzy Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.22111/IJFS.2021.6264\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Fuzzy Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.22111/IJFS.2021.6264","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

利用模糊偏好函数的概念,提出了一种新的优化设计策略。该方法通过偏好函数有效地利用了设计者的经验,并能将有约束的多目标优化问题转化为无约束的单目标优化问题。这两个问题是所提出的方法的最重要的特点,使用它们,可以在更短的时间内获得更实用的解决方案。为了实现所提出的方法,考虑了无人机的两种设计优化:确定性优化和非确定性优化。本文的优化问题是一个有约束的多目标问题,考虑到遗传算法的能力,选择该算法作为优化器。考虑了不确定性,采用蒙特卡罗模拟(MCS)方法进行不确定性建模。结果表明,该方法具有较好的鲁棒性和最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel method for multi-objective design optimization based on fuzzy systems
A novel strategy to design optimization is expressed using the fuzzy preference function concept. This method efficiently uses the designer’s experiences by preference functions and it is also able to transform a constrained multi-objective optimization problem into an unconstrained single-objective optimization problem. These two issues are the most important features of the proposed method which using them, you can achieve a more practical solution in less time. To implement the proposed method, two design optimizations of an unmanned aerial vehicle are considered which are: deterministic and non-deterministic optimizations. The optimization problem in this paper is a constrained multiobjective problem that with attention to the ability of genetic algorithm, this algorithm is selected as the optimizer. Uncertainties are considered and the Monte Carlo simulation (MCS) method is used for uncertainties modeling. The obtained results show a good performance of this technique in achieving optimal and robust solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
16.70%
发文量
0
期刊介绍: The two-monthly Iranian Journal of Fuzzy Systems (IJFS) aims to provide an international forum for refereed original research works in the theory and applications of fuzzy sets and systems in the areas of foundations, pure mathematics, artificial intelligence, control, robotics, data analysis, data mining, decision making, finance and management, information systems, operations research, pattern recognition and image processing, soft computing and uncertainty modeling. Manuscripts submitted to the IJFS must be original unpublished work and should not be in consideration for publication elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信