{"title":"基于模糊系统的多目标设计优化新方法","authors":"M. R. Setayandeh, A. Babaei","doi":"10.22111/IJFS.2021.6264","DOIUrl":null,"url":null,"abstract":"A novel strategy to design optimization is expressed using the fuzzy preference function concept. This method efficiently uses the designer’s experiences by preference functions and it is also able to transform a constrained multi-objective optimization problem into an unconstrained single-objective optimization problem. These two issues are the most important features of the proposed method which using them, you can achieve a more practical solution in less time. To implement the proposed method, two design optimizations of an unmanned aerial vehicle are considered which are: deterministic and non-deterministic optimizations. The optimization problem in this paper is a constrained multi\u0002objective problem that with attention to the ability of genetic algorithm, this algorithm is selected as the optimizer. Uncertainties are considered and the Monte Carlo simulation (MCS) method is used for uncertainties modeling. The obtained results show a good performance of this technique in achieving optimal and robust solutions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel method for multi-objective design optimization based on fuzzy systems\",\"authors\":\"M. R. Setayandeh, A. Babaei\",\"doi\":\"10.22111/IJFS.2021.6264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel strategy to design optimization is expressed using the fuzzy preference function concept. This method efficiently uses the designer’s experiences by preference functions and it is also able to transform a constrained multi-objective optimization problem into an unconstrained single-objective optimization problem. These two issues are the most important features of the proposed method which using them, you can achieve a more practical solution in less time. To implement the proposed method, two design optimizations of an unmanned aerial vehicle are considered which are: deterministic and non-deterministic optimizations. The optimization problem in this paper is a constrained multi\\u0002objective problem that with attention to the ability of genetic algorithm, this algorithm is selected as the optimizer. Uncertainties are considered and the Monte Carlo simulation (MCS) method is used for uncertainties modeling. The obtained results show a good performance of this technique in achieving optimal and robust solutions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.22111/IJFS.2021.6264\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.22111/IJFS.2021.6264","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel method for multi-objective design optimization based on fuzzy systems
A novel strategy to design optimization is expressed using the fuzzy preference function concept. This method efficiently uses the designer’s experiences by preference functions and it is also able to transform a constrained multi-objective optimization problem into an unconstrained single-objective optimization problem. These two issues are the most important features of the proposed method which using them, you can achieve a more practical solution in less time. To implement the proposed method, two design optimizations of an unmanned aerial vehicle are considered which are: deterministic and non-deterministic optimizations. The optimization problem in this paper is a constrained multiobjective problem that with attention to the ability of genetic algorithm, this algorithm is selected as the optimizer. Uncertainties are considered and the Monte Carlo simulation (MCS) method is used for uncertainties modeling. The obtained results show a good performance of this technique in achieving optimal and robust solutions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.