{"title":"分数阶系统的多重固定极点有理逼近","authors":"Yiheng Wei, Hui Zhang, Y. Hou, Kun Cheng","doi":"10.1115/1.4049557","DOIUrl":null,"url":null,"abstract":"\n Our topic is the rational approximation of fractional order systems under Riemann–Liouville definition. This is a venerable, vast, fundamental area which attracts ongoing attention in coming years. In this work, the multiple fixed-pole scheme is developed. First, new schemes with different relative degree are developed to approximate fractional operators. Then, the fractional order is extended to the case of α>1. A discussion is made on the uniformity between the differentiator-based method and the integrator-based method. Afterward, the multiplicity of pole/zero is further generalized. In this framework, the nonzero initial instant and nonzero initial state are considered. Four examples are finally provided to show the feasibility and effectiveness of the developed algorithms.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"4 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiple Fixed Pole-Based Rational Approximation for Fractional Order Systems\",\"authors\":\"Yiheng Wei, Hui Zhang, Y. Hou, Kun Cheng\",\"doi\":\"10.1115/1.4049557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Our topic is the rational approximation of fractional order systems under Riemann–Liouville definition. This is a venerable, vast, fundamental area which attracts ongoing attention in coming years. In this work, the multiple fixed-pole scheme is developed. First, new schemes with different relative degree are developed to approximate fractional operators. Then, the fractional order is extended to the case of α>1. A discussion is made on the uniformity between the differentiator-based method and the integrator-based method. Afterward, the multiplicity of pole/zero is further generalized. In this framework, the nonzero initial instant and nonzero initial state are considered. Four examples are finally provided to show the feasibility and effectiveness of the developed algorithms.\",\"PeriodicalId\":54846,\"journal\":{\"name\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4049557\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4049557","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Multiple Fixed Pole-Based Rational Approximation for Fractional Order Systems
Our topic is the rational approximation of fractional order systems under Riemann–Liouville definition. This is a venerable, vast, fundamental area which attracts ongoing attention in coming years. In this work, the multiple fixed-pole scheme is developed. First, new schemes with different relative degree are developed to approximate fractional operators. Then, the fractional order is extended to the case of α>1. A discussion is made on the uniformity between the differentiator-based method and the integrator-based method. Afterward, the multiplicity of pole/zero is further generalized. In this framework, the nonzero initial instant and nonzero initial state are considered. Four examples are finally provided to show the feasibility and effectiveness of the developed algorithms.
期刊介绍:
The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.