{"title":"周期情况下Navier-Stokes方程的稳定性问题","authors":"W. Zaja̧czkowski","doi":"10.4064/AM2309-8-2018","DOIUrl":null,"url":null,"abstract":"The Navier-Stokes motions in a box with periodic boundary conditions are considered. First the existence of global regular two-dimensional solutions is proved. The solutions are such that continuous with respect to time norms are controlled by the same constant for all $t\\in\\mathbb{R}_+$. Assuming that the initial velocity and the external force are sufficiently close to the initial velocity and the external force of the two-dimensional solutions we prove existence of global three-dimensional regular solutions which remain close to the two-dimensional solutions for all time. In this way we mean stability of two-dimensional solutions.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"164 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Some stability problem for the Navier–Stokes equations in the periodic case\",\"authors\":\"W. Zaja̧czkowski\",\"doi\":\"10.4064/AM2309-8-2018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Navier-Stokes motions in a box with periodic boundary conditions are considered. First the existence of global regular two-dimensional solutions is proved. The solutions are such that continuous with respect to time norms are controlled by the same constant for all $t\\\\in\\\\mathbb{R}_+$. Assuming that the initial velocity and the external force are sufficiently close to the initial velocity and the external force of the two-dimensional solutions we prove existence of global three-dimensional regular solutions which remain close to the two-dimensional solutions for all time. In this way we mean stability of two-dimensional solutions.\",\"PeriodicalId\":52313,\"journal\":{\"name\":\"Applicationes Mathematicae\",\"volume\":\"164 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/AM2309-8-2018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/AM2309-8-2018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Some stability problem for the Navier–Stokes equations in the periodic case
The Navier-Stokes motions in a box with periodic boundary conditions are considered. First the existence of global regular two-dimensional solutions is proved. The solutions are such that continuous with respect to time norms are controlled by the same constant for all $t\in\mathbb{R}_+$. Assuming that the initial velocity and the external force are sufficiently close to the initial velocity and the external force of the two-dimensional solutions we prove existence of global three-dimensional regular solutions which remain close to the two-dimensional solutions for all time. In this way we mean stability of two-dimensional solutions.