直驱永磁同步电机效率优化控制

Chengming Zhang, Jiwei Cao, Qingbo Guo, Liyi Li, Mingyi Wang, Jiaxi Liu
{"title":"直驱永磁同步电机效率优化控制","authors":"Chengming Zhang, Jiwei Cao, Qingbo Guo, Liyi Li, Mingyi Wang, Jiaxi Liu","doi":"10.12783/dteees/iceee2019/31816","DOIUrl":null,"url":null,"abstract":"High-performance permanent magnet synchronous motor(PMSM) systems used in electric vehicle(EV) are required to deliver high efficiency over the wide speed and torque ranges. This paper proposes a novel efficiency optimization control strategy of PMSM system EV which can maximize the system efficiency in both steady and dynamic state. As the PMSM is directly connected with the load, caused the output torque of motor is a function of the rotate speed, this study is focused on the dynamic system model with the driving cycle which considers about motor copper loss, motor iron loss and inverter loss. Based on the dynamic system model, the proposed control strategy can optimize motor loss and inverter loss together, by which the system efficiency is increased over the whole operation duty. Compared with traditional control strategy, the proposed control strategy can decrease the energy consumption over the whole driving cycle. Both theoretical analysis and experimental results verifies the validity of proposed efficiency optimization control strategy.","PeriodicalId":11324,"journal":{"name":"DEStech Transactions on Environment, Energy and Earth Sciences","volume":"134 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency Optimization Control of Direct Drive Permanent Magnet Synchronous Motor\",\"authors\":\"Chengming Zhang, Jiwei Cao, Qingbo Guo, Liyi Li, Mingyi Wang, Jiaxi Liu\",\"doi\":\"10.12783/dteees/iceee2019/31816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-performance permanent magnet synchronous motor(PMSM) systems used in electric vehicle(EV) are required to deliver high efficiency over the wide speed and torque ranges. This paper proposes a novel efficiency optimization control strategy of PMSM system EV which can maximize the system efficiency in both steady and dynamic state. As the PMSM is directly connected with the load, caused the output torque of motor is a function of the rotate speed, this study is focused on the dynamic system model with the driving cycle which considers about motor copper loss, motor iron loss and inverter loss. Based on the dynamic system model, the proposed control strategy can optimize motor loss and inverter loss together, by which the system efficiency is increased over the whole operation duty. Compared with traditional control strategy, the proposed control strategy can decrease the energy consumption over the whole driving cycle. Both theoretical analysis and experimental results verifies the validity of proposed efficiency optimization control strategy.\",\"PeriodicalId\":11324,\"journal\":{\"name\":\"DEStech Transactions on Environment, Energy and Earth Sciences\",\"volume\":\"134 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DEStech Transactions on Environment, Energy and Earth Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/dteees/iceee2019/31816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DEStech Transactions on Environment, Energy and Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/dteees/iceee2019/31816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用于电动汽车(EV)的高性能永磁同步电机(PMSM)系统需要在宽速度和扭矩范围内提供高效率。本文提出了一种新的永磁同步电机系统EV效率优化控制策略,使系统在稳态和动态状态下都能实现效率最大化。由于永磁同步电机与负载直接相连,电机的输出转矩是转速的函数,因此本文主要研究考虑电机铜损、电机铁损和逆变器损耗的具有驱动周期的动态系统模型。基于动态系统模型,提出的控制策略可以同时优化电机损耗和逆变器损耗,从而提高系统的整体运行效率。与传统的控制策略相比,所提出的控制策略可以降低整个行驶周期的能耗。理论分析和实验结果验证了所提出的效率优化控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficiency Optimization Control of Direct Drive Permanent Magnet Synchronous Motor
High-performance permanent magnet synchronous motor(PMSM) systems used in electric vehicle(EV) are required to deliver high efficiency over the wide speed and torque ranges. This paper proposes a novel efficiency optimization control strategy of PMSM system EV which can maximize the system efficiency in both steady and dynamic state. As the PMSM is directly connected with the load, caused the output torque of motor is a function of the rotate speed, this study is focused on the dynamic system model with the driving cycle which considers about motor copper loss, motor iron loss and inverter loss. Based on the dynamic system model, the proposed control strategy can optimize motor loss and inverter loss together, by which the system efficiency is increased over the whole operation duty. Compared with traditional control strategy, the proposed control strategy can decrease the energy consumption over the whole driving cycle. Both theoretical analysis and experimental results verifies the validity of proposed efficiency optimization control strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信