多元化与投资组合方差的分布,第二部分:波动性稳定性作为多元化的衡量标准

Brian Fleming, Jens Kroeske
{"title":"多元化与投资组合方差的分布,第二部分:波动性稳定性作为多元化的衡量标准","authors":"Brian Fleming, Jens Kroeske","doi":"10.2139/ssrn.3646432","DOIUrl":null,"url":null,"abstract":"We introduce a new framework for understanding portfolio diversification that provides a coherent basis for comparing methodologies and offers a new approach to portfolio construction. The primary argument is that measures of diversification based only on a covariance matrix are ambiguous because in such a risk setting only the overall portfolio variance is of any import. To resolve this we propose that the purpose of diversification is most helpfully viewed as reducing the variance of portfolio variance itself, which in turn is only meaningful when one accounts for excess kurtosis. Connecting diversification and the variance of variance provides a natural extension to the ubiquitous mean-variance approach. Examples are provided to demonstrate the intuitive nature of portfolios that maximize diversification through minimizing kurtosis. Furthermore, we introduce portfolio dimensionality as a transformation of kurtosis that allows us to interpret diversification in terms of an equivalent number of assets with independent and identically distributed (IID) returns.","PeriodicalId":11410,"journal":{"name":"Econometric Modeling: Capital Markets - Risk eJournal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Diversification and the Distribution of Portfolio Variance, Part 2: Volatility Stability as a Measure of Diversification\",\"authors\":\"Brian Fleming, Jens Kroeske\",\"doi\":\"10.2139/ssrn.3646432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new framework for understanding portfolio diversification that provides a coherent basis for comparing methodologies and offers a new approach to portfolio construction. The primary argument is that measures of diversification based only on a covariance matrix are ambiguous because in such a risk setting only the overall portfolio variance is of any import. To resolve this we propose that the purpose of diversification is most helpfully viewed as reducing the variance of portfolio variance itself, which in turn is only meaningful when one accounts for excess kurtosis. Connecting diversification and the variance of variance provides a natural extension to the ubiquitous mean-variance approach. Examples are provided to demonstrate the intuitive nature of portfolios that maximize diversification through minimizing kurtosis. Furthermore, we introduce portfolio dimensionality as a transformation of kurtosis that allows us to interpret diversification in terms of an equivalent number of assets with independent and identically distributed (IID) returns.\",\"PeriodicalId\":11410,\"journal\":{\"name\":\"Econometric Modeling: Capital Markets - Risk eJournal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Capital Markets - Risk eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3646432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Risk eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3646432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们介绍了一个理解投资组合多样化的新框架,为比较方法提供了一个连贯的基础,并提供了一种新的投资组合构建方法。主要的论点是,仅基于协方差矩阵的多样化措施是模糊的,因为在这样的风险设置中,只有整体投资组合方差是重要的。为了解决这个问题,我们建议将多样化的目的视为减少投资组合方差本身的方差,这反过来只有在考虑过度峰度时才有意义。将多样化和方差的方差联系起来,为普遍存在的均值-方差方法提供了一种自然的延伸。举例说明了通过最小化峰度来最大化多样化的投资组合的直观本质。此外,我们将投资组合维度作为峰度的转换引入,使我们能够根据具有独立和同分布(IID)回报的相等数量的资产来解释多样化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diversification and the Distribution of Portfolio Variance, Part 2: Volatility Stability as a Measure of Diversification
We introduce a new framework for understanding portfolio diversification that provides a coherent basis for comparing methodologies and offers a new approach to portfolio construction. The primary argument is that measures of diversification based only on a covariance matrix are ambiguous because in such a risk setting only the overall portfolio variance is of any import. To resolve this we propose that the purpose of diversification is most helpfully viewed as reducing the variance of portfolio variance itself, which in turn is only meaningful when one accounts for excess kurtosis. Connecting diversification and the variance of variance provides a natural extension to the ubiquitous mean-variance approach. Examples are provided to demonstrate the intuitive nature of portfolios that maximize diversification through minimizing kurtosis. Furthermore, we introduce portfolio dimensionality as a transformation of kurtosis that allows us to interpret diversification in terms of an equivalent number of assets with independent and identically distributed (IID) returns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信