稀疏信任推荐的半监督学习

Zhengdi Hu, Guangquan Xu, Xi Zheng, Jiang Liu, Xiaojiang Du
{"title":"稀疏信任推荐的半监督学习","authors":"Zhengdi Hu, Guangquan Xu, Xi Zheng, Jiang Liu, Xiaojiang Du","doi":"10.1109/GLOBECOM38437.2019.9014085","DOIUrl":null,"url":null,"abstract":"Trust is widely applied in recommender systems to improve recommendation performance by alleviating well-known problems, such as cold start, data sparsity, and so on. However, trust data itself also faces sparse problems. To solve these problems, we propose a novel sparse trust recommendation model, SSL-STR. Specifically, we decompose the aspects influencing trust-building into finer-grained factors, and combine these factors to mine the implicit sparse trust relationships among users by employing the Transductive Support Vector Machine algorithm. Then we extend SVD++ model with social trust and sparse trust information for rating prediction in the recommendation system. Experiments show that our SSL-STR improves the recommendation accuracy by up to 4.3%.","PeriodicalId":6868,"journal":{"name":"2019 IEEE Global Communications Conference (GLOBECOM)","volume":"20 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SSL-STR: Semi-Supervised Learning for Sparse Trust Recommendation\",\"authors\":\"Zhengdi Hu, Guangquan Xu, Xi Zheng, Jiang Liu, Xiaojiang Du\",\"doi\":\"10.1109/GLOBECOM38437.2019.9014085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trust is widely applied in recommender systems to improve recommendation performance by alleviating well-known problems, such as cold start, data sparsity, and so on. However, trust data itself also faces sparse problems. To solve these problems, we propose a novel sparse trust recommendation model, SSL-STR. Specifically, we decompose the aspects influencing trust-building into finer-grained factors, and combine these factors to mine the implicit sparse trust relationships among users by employing the Transductive Support Vector Machine algorithm. Then we extend SVD++ model with social trust and sparse trust information for rating prediction in the recommendation system. Experiments show that our SSL-STR improves the recommendation accuracy by up to 4.3%.\",\"PeriodicalId\":6868,\"journal\":{\"name\":\"2019 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"20 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM38437.2019.9014085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM38437.2019.9014085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

信任被广泛应用于推荐系统中,通过缓解冷启动、数据稀疏等众所周知的问题来提高推荐性能。然而,信任数据本身也面临稀疏问题。为了解决这些问题,我们提出了一种新的稀疏信任推荐模型SSL-STR。具体而言,我们将影响信任建立的各个方面分解为更细粒度的因素,并利用转换支持向量机算法将这些因素组合起来,挖掘用户之间的隐式稀疏信任关系。然后利用社会信任和稀疏信任信息对svd++模型进行扩展,用于推荐系统的评级预测。实验表明,我们的SSL-STR将推荐准确率提高了4.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SSL-STR: Semi-Supervised Learning for Sparse Trust Recommendation
Trust is widely applied in recommender systems to improve recommendation performance by alleviating well-known problems, such as cold start, data sparsity, and so on. However, trust data itself also faces sparse problems. To solve these problems, we propose a novel sparse trust recommendation model, SSL-STR. Specifically, we decompose the aspects influencing trust-building into finer-grained factors, and combine these factors to mine the implicit sparse trust relationships among users by employing the Transductive Support Vector Machine algorithm. Then we extend SVD++ model with social trust and sparse trust information for rating prediction in the recommendation system. Experiments show that our SSL-STR improves the recommendation accuracy by up to 4.3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信