{"title":"筛孔对Ti筛等离子体渗氮低碳钢渗氮性能、耐蚀性和耐磨性的影响","authors":"K. Imamura, A. Nishimoto","doi":"10.2320/JINSTMET.J2020049","DOIUrl":null,"url":null,"abstract":"In order to investigate the e ff ect of the screen hole state of the active screen plasma nitriding ( ASPN ) process using Ti screen, low carbon steel S15C was treated by ASPN treatment and DC plasma nitriding treatment ( S – DCPN ) using the Ti screen with the hole diameter of ϕ 5mm, 10mm, and 20mm and the open area ratio of 0 % , 15 % , 35 % , and 55 % . Plasma nitriding was performed at 873K for 180min at a gas pressure of 300Pa under an atmosphere of 75 % N 2 + 25 % H 2 . After the nitriding treatment, X – ray di ff raction ( XRD ) , surface microstructure observation, cross – section microstructure observation, wear test, Vickers hardness test, glow discharge optical emission spectrometry ( GD – OES ) , and corrosion test were performed. As a result, the wear resistance of the ASPN – treated samples was improved under the condition that the deposit particles were small and the deposit layer was thick. In the cross – sectional microstructure of the S – DCPN – treated samples, a compound layer composed of iron nitrides and a di ff usion layer in which γ ’ – Fe 4 N was precipitated by nitrogen di ff usion were con fi rmed. The surface compound layer of iron nitrides was not formed when a screen with a hole size of 20mm and open area ratio of 55 % was used. The results of SEM – EDX also con fi rmed the di ff usion of titanium by S – DCPN treatment using a Ti screen. [ doi:10.2320 / jinstmet.J2020049 ] ( Received October 14, 2020; Accepted November 18, 2020; Published January 22, 2021 )","PeriodicalId":17322,"journal":{"name":"Journal of the Japan Institute of Metals and Materials","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Screen Open Hole on Nitriding Behavior, Corrosion Resistance and Wear Resistance of Plasma Nitrided Low Carbon Steel Using Ti Screen\",\"authors\":\"K. Imamura, A. Nishimoto\",\"doi\":\"10.2320/JINSTMET.J2020049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to investigate the e ff ect of the screen hole state of the active screen plasma nitriding ( ASPN ) process using Ti screen, low carbon steel S15C was treated by ASPN treatment and DC plasma nitriding treatment ( S – DCPN ) using the Ti screen with the hole diameter of ϕ 5mm, 10mm, and 20mm and the open area ratio of 0 % , 15 % , 35 % , and 55 % . Plasma nitriding was performed at 873K for 180min at a gas pressure of 300Pa under an atmosphere of 75 % N 2 + 25 % H 2 . After the nitriding treatment, X – ray di ff raction ( XRD ) , surface microstructure observation, cross – section microstructure observation, wear test, Vickers hardness test, glow discharge optical emission spectrometry ( GD – OES ) , and corrosion test were performed. As a result, the wear resistance of the ASPN – treated samples was improved under the condition that the deposit particles were small and the deposit layer was thick. In the cross – sectional microstructure of the S – DCPN – treated samples, a compound layer composed of iron nitrides and a di ff usion layer in which γ ’ – Fe 4 N was precipitated by nitrogen di ff usion were con fi rmed. The surface compound layer of iron nitrides was not formed when a screen with a hole size of 20mm and open area ratio of 55 % was used. The results of SEM – EDX also con fi rmed the di ff usion of titanium by S – DCPN treatment using a Ti screen. [ doi:10.2320 / jinstmet.J2020049 ] ( Received October 14, 2020; Accepted November 18, 2020; Published January 22, 2021 )\",\"PeriodicalId\":17322,\"journal\":{\"name\":\"Journal of the Japan Institute of Metals and Materials\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japan Institute of Metals and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2320/JINSTMET.J2020049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Institute of Metals and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2320/JINSTMET.J2020049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Screen Open Hole on Nitriding Behavior, Corrosion Resistance and Wear Resistance of Plasma Nitrided Low Carbon Steel Using Ti Screen
In order to investigate the e ff ect of the screen hole state of the active screen plasma nitriding ( ASPN ) process using Ti screen, low carbon steel S15C was treated by ASPN treatment and DC plasma nitriding treatment ( S – DCPN ) using the Ti screen with the hole diameter of ϕ 5mm, 10mm, and 20mm and the open area ratio of 0 % , 15 % , 35 % , and 55 % . Plasma nitriding was performed at 873K for 180min at a gas pressure of 300Pa under an atmosphere of 75 % N 2 + 25 % H 2 . After the nitriding treatment, X – ray di ff raction ( XRD ) , surface microstructure observation, cross – section microstructure observation, wear test, Vickers hardness test, glow discharge optical emission spectrometry ( GD – OES ) , and corrosion test were performed. As a result, the wear resistance of the ASPN – treated samples was improved under the condition that the deposit particles were small and the deposit layer was thick. In the cross – sectional microstructure of the S – DCPN – treated samples, a compound layer composed of iron nitrides and a di ff usion layer in which γ ’ – Fe 4 N was precipitated by nitrogen di ff usion were con fi rmed. The surface compound layer of iron nitrides was not formed when a screen with a hole size of 20mm and open area ratio of 55 % was used. The results of SEM – EDX also con fi rmed the di ff usion of titanium by S – DCPN treatment using a Ti screen. [ doi:10.2320 / jinstmet.J2020049 ] ( Received October 14, 2020; Accepted November 18, 2020; Published January 22, 2021 )