审计是否提供证据来发现和评估潜在的财务压力?计量经济学技术和人工智能的比较诊断

Carlos Piñeiro Sánchez , Pablo de Llano Monelos , Manuel Rodríguez López
{"title":"审计是否提供证据来发现和评估潜在的财务压力?计量经济学技术和人工智能的比较诊断","authors":"Carlos Piñeiro Sánchez ,&nbsp;Pablo de Llano Monelos ,&nbsp;Manuel Rodríguez López","doi":"10.1016/j.redee.2012.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Forecasting financial failure is a critical issue for both financial theory and practice, as bankruptcies cause severe effects, not only for shareholders and creditors, but also for third parties throughout the economic system. We have developed a logit model and an artificial neural network to help forecast financial distress based on the information content of audit reports and auditors contracts. These models are built on empirical evidence indicating that it is possible to infer the existence of unrevealed financial pressures, given a small number of quantifiable signs, e.g. changing of auditors, nonfulfillment of formal requirements, and the accumulation of qualified reports. Even with its parsimony, logit model reaches an 85% hit rate, and neural network is able to correctly classify up to 90% of the companies in training, testing and cross-validation phases. We discuss whether the expression of going-concerns in emphasis paragraphs may reduce the ability of investors to evaluate corporate financial risk and/or forecast bankruptcy events.</p></div>","PeriodicalId":101112,"journal":{"name":"Revista Europea de Dirección y Economía de la Empresa","volume":"22 3","pages":"Pages 115-130"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.redee.2012.10.001","citationCount":"12","resultStr":"{\"title\":\"¿Proporciona la auditoría evidencias para detectar y evaluar tensiones financieras latentes? Un diagnóstico comparativo mediante técnicas econométricas e inteligencia artificial\",\"authors\":\"Carlos Piñeiro Sánchez ,&nbsp;Pablo de Llano Monelos ,&nbsp;Manuel Rodríguez López\",\"doi\":\"10.1016/j.redee.2012.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Forecasting financial failure is a critical issue for both financial theory and practice, as bankruptcies cause severe effects, not only for shareholders and creditors, but also for third parties throughout the economic system. We have developed a logit model and an artificial neural network to help forecast financial distress based on the information content of audit reports and auditors contracts. These models are built on empirical evidence indicating that it is possible to infer the existence of unrevealed financial pressures, given a small number of quantifiable signs, e.g. changing of auditors, nonfulfillment of formal requirements, and the accumulation of qualified reports. Even with its parsimony, logit model reaches an 85% hit rate, and neural network is able to correctly classify up to 90% of the companies in training, testing and cross-validation phases. We discuss whether the expression of going-concerns in emphasis paragraphs may reduce the ability of investors to evaluate corporate financial risk and/or forecast bankruptcy events.</p></div>\",\"PeriodicalId\":101112,\"journal\":{\"name\":\"Revista Europea de Dirección y Economía de la Empresa\",\"volume\":\"22 3\",\"pages\":\"Pages 115-130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.redee.2012.10.001\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Europea de Dirección y Economía de la Empresa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1019683813000188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Europea de Dirección y Economía de la Empresa","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1019683813000188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

预测金融破产对于金融理论和实践来说都是一个关键问题,因为破产不仅会对股东和债权人造成严重影响,而且会对整个经济体系中的第三方造成严重影响。我们开发了一个logit模型和一个人工神经网络,以帮助预测基于审计报告和审计师合同的信息内容的财务困境。这些模型是建立在经验证据的基础上的,这些证据表明,只要有少量可量化的迹象,例如更换审计师、未满足正式要求以及合格报告的积累,就有可能推断出未披露的财务压力的存在。尽管logit模型很简单,但准确率达到85%,神经网络在培训、测试和交叉验证阶段能够正确分类高达90%的公司。我们讨论了在强调段落中持续经营的表达是否会降低投资者评估公司财务风险和/或预测破产事件的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
¿Proporciona la auditoría evidencias para detectar y evaluar tensiones financieras latentes? Un diagnóstico comparativo mediante técnicas econométricas e inteligencia artificial

Forecasting financial failure is a critical issue for both financial theory and practice, as bankruptcies cause severe effects, not only for shareholders and creditors, but also for third parties throughout the economic system. We have developed a logit model and an artificial neural network to help forecast financial distress based on the information content of audit reports and auditors contracts. These models are built on empirical evidence indicating that it is possible to infer the existence of unrevealed financial pressures, given a small number of quantifiable signs, e.g. changing of auditors, nonfulfillment of formal requirements, and the accumulation of qualified reports. Even with its parsimony, logit model reaches an 85% hit rate, and neural network is able to correctly classify up to 90% of the companies in training, testing and cross-validation phases. We discuss whether the expression of going-concerns in emphasis paragraphs may reduce the ability of investors to evaluate corporate financial risk and/or forecast bankruptcy events.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信