{"title":"原子磁强计极化螺旋调制磁通信。","authors":"I. Fan, S. Knappe, V. Gerginov","doi":"10.1063/5.0086169","DOIUrl":null,"url":null,"abstract":"The radio frequency telecommunication at a kilohertz range through an electrically conductive medium is often impeded by the strong reflection and absorption at the interface. The polarization helicity of the magnetic field can be modulated/demodulated to provide a new communication protocol to potentiality circumvent these issues. Here, a miniature magnetic quantum receiver, capable of simultaneously discriminating the two possible helicities of a magnetic field, is presented. The core physics package constitutes two optically pumped atomic magnetometers. It is shown that a data rate of 500 bits/s with a carrier frequency of 2 kHz can be efficiently demodulated in an unshielded environment, paving a promising route for the future of radio frequency communication through a conductive barrier.","PeriodicalId":54761,"journal":{"name":"Journal of the Optical Society of America and Review of Scientific Instruments","volume":"127 1","pages":"053004"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Magnetic communication by polarization helicity modulation using atomic magnetometers.\",\"authors\":\"I. Fan, S. Knappe, V. Gerginov\",\"doi\":\"10.1063/5.0086169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The radio frequency telecommunication at a kilohertz range through an electrically conductive medium is often impeded by the strong reflection and absorption at the interface. The polarization helicity of the magnetic field can be modulated/demodulated to provide a new communication protocol to potentiality circumvent these issues. Here, a miniature magnetic quantum receiver, capable of simultaneously discriminating the two possible helicities of a magnetic field, is presented. The core physics package constitutes two optically pumped atomic magnetometers. It is shown that a data rate of 500 bits/s with a carrier frequency of 2 kHz can be efficiently demodulated in an unshielded environment, paving a promising route for the future of radio frequency communication through a conductive barrier.\",\"PeriodicalId\":54761,\"journal\":{\"name\":\"Journal of the Optical Society of America and Review of Scientific Instruments\",\"volume\":\"127 1\",\"pages\":\"053004\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Optical Society of America and Review of Scientific Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0086169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America and Review of Scientific Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0086169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetic communication by polarization helicity modulation using atomic magnetometers.
The radio frequency telecommunication at a kilohertz range through an electrically conductive medium is often impeded by the strong reflection and absorption at the interface. The polarization helicity of the magnetic field can be modulated/demodulated to provide a new communication protocol to potentiality circumvent these issues. Here, a miniature magnetic quantum receiver, capable of simultaneously discriminating the two possible helicities of a magnetic field, is presented. The core physics package constitutes two optically pumped atomic magnetometers. It is shown that a data rate of 500 bits/s with a carrier frequency of 2 kHz can be efficiently demodulated in an unshielded environment, paving a promising route for the future of radio frequency communication through a conductive barrier.